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Summary

In constructing the suite of tools for the real-time delta-sigma multibeam
processing, we performed the following steps.

1. The algorithm for the design of antenna arrays (corresponding to
user-prescribed antenna patterns) has been improved. While certain gen-
eralizations of classical results (Markov, Karlin, et alii) state that certain
antenna structures exist, algorithms for constructing such structures often
have a heuristic element. Our older schemes have a non-trivial failure rate.
The rate has been sufficiently low that practically any feasible structure can
be designed, and sufficiently high to require human intervention and make
the design a potentially time-consuming process.

The new algorithm has a negligible failure rate, and the very definition
of failure is much more benign: instead of failing to produce the required
structure, the scheme (very rarely) returns a structure containing one extra
element (compared to the optimal one).

2. When a single antenna array has to perform several tasks, the problem
is (at the present time) approached via simple scheduling: the tasks are or-
dered in terms of their urgency, and performed one after another. Obviously,
some of the tasks can be performed simultaneously, either with the existing
hardware or with very minor modifications. Other tasks might be fundamen-
tally incompatible, and have to be scheduled no matter what equipment is
to be used. We have developed criteria (applied to far-field patterns) that
permit us to avoid attempts to design impossible structures. There appears
to be a chance that such techniques could be used for real-time scheduling.

3. We discovered that the CPU time requirements associated with the
design of the required patterns for real-life antenna arrays (assuming the
use of classical algorithms from linear algebra) exceeds the capabilities of
the available computer hardware; Moore’s law alone is unlikely to alter this
situation in the near future. This had been expected, and the effort was
initiated to design and build the requisite analytical and numerical tools.

4. We discovered a new class of algorithms for the “compression” of low-
rank matrices; we refer to the approach as “skeletonization”. It is somewhat
similar to the classical singular value decomposition (SVD) but requires con-
siderably less CPU time to construct, and leads to schemes for the direct
(as opposed to iterative) solution of systems of linear algebraic equations as-




sociated with the numerical scattering theory, design of antenna arrays and
patterns, etc.

5. It has been observed that the new approach might lead to new “fast”
algorithms for the diagonalization of (and for the construction of the SVD
for) certain classes of matrices, including those encountered in the design of
optimal antenna patterns for conformal and volume antenna arrays. Rudi-
mentary codes of this type have been constructed.




Whenever physical signals are measured .or generated, the locations of receivers or trans-
ducers have to be selected. Most of the time, this appears to be done on an ad hoc basis.
For example, when a string of geophones is used in the measurements of seismic data in
oil exploration, the receivers are located at equispaced points on an interval. When phased
array antennae are constructed, their shapes are determined by certain aperture consid-
erations; round and rectangular shapes are common. When antenna beams are steered
electronically, it is done by changing the phases (and sometimes, the amplitudes) of the
transducers. Again, these transducers are located in a region of predetermined geometry,
and their actual locations within that geometry are chosen via some heuristic procedure.
In all these (and many other) cases, the signals being received or generated are band-limited.
Optimal representation of such signals has been studied in detail by Slepian et. al. more
than 30 years ago, and some of the obtained results were applied by D. Rhodes to the
design of antenna patterns; further development of this line of research appears to have
been hindered by the absence at the time of necessary numerical tools. We combine these
classical results with the recently developed apparatus of Generalized Gaussian Quadratures
to construct optimal nodes for the measurement and generation of band-limited signals. In
this report, we describe the procedure based on these techniques for the design of such
receiver (and transducer) configurations in a variety of environments.
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1 Introduction

When measurements are performed, it often happens that the signal to be measured is
well approximated by linear combinations of oscillatory exponentials, i.e. functions of

the form
n .
> ajeetNT (1)
=1
in one dimension, of the form
n
Z ;- et (Aiztu;y) (2)
=1
in two dimensions, and of the form
n
3 - et i T v 3)
j=1
in three dimensions. In most cases, the signal is band-limited, i.e. there exist such real
positive a that all 1 < j < m,
RN (4)
in one dimension,
2, .2 2
Ajtu;<a (5)
in two dimensions, and
2., .2, .2 2
Aj+pi +v° < af (6)

in three dimensions.
As is well-known, most measurements of electromagnetic and acoustic data (espe-
cially at reasonably high frequencies) are of this form. Examples of such situations

include geophone and hydrophone strings in geophysics, phased array antennae in radar




systems, multiple transceivers in ultrasound imaging, and a number of other applications
in astrophysics, medical imaging, non-destructive testing, etc.

In this report, we describe a procedure for determining the optimal distribution of
sources and receivers that maximizes accuracy and resolution in measuring band-limited
data given a fixed number of receivers. Alternatively, the procedure can be used to
determine the optimal distribution of receivers that will minimize their number given
specified accuracy and resolution. While the techniques described in this note are fairly
general, we describe them in detail in the case of linear antenna arrays; the changes

needed to generalize the approach to other cases are summarized in Section 6.

Remark 1.1 One of principal issues in the design of antenna arrays is the treatment
(or avoidance) of the so-called supergain (or superdirectivity). Supergain is the con-
dition that occurs when an antenna design is attempted that is prohibited (or nearly
prohibited) by the Heisenberg principle; technically, it occurs in the form of very closely
spaced elements operating out of phaze, and leads to prbhibitive Ohmic losses in trans-
mitting antennae, loss of sensitivity in receiving ones, etc. Since the purpose of this
note is to introduce techniques for selecting the locations of elements for a prescribed
antenna pattern, we avoid the issue of choosing the antenna pattern altogether. Instead,
we observe design optimal element distributions for several standard far-field patterns
(see Section 5.1), and we observe that the scheme for choosing optimal distributions of

elements is virtually independent of the patterns being approximated.

Technically, the approach taken here is to observe that designing an antenna array
can be viewed as constructing a quadrature formula for the integration of certain spécial
classes of functions. Using recently developed techniques for the construction of so-called
Generalized Gaussian Quadratures, we obtain both nodes and weights that are optimal
(in a very strong sense) for the required antenna pattern.

The structure of this note is as follows. In Section 2, we summarize some of the math-

ematical apparatus to be used: Chebychev Systems, Generalized Gaussian Quadratures,
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etc. In Section 3, we recapitulate some of the standard antenna theory, primarily to
introduce the necessary notation. In Section 4, element distributions given a specific an-
tenna pattern. In Section 5, we illustrate our approach with several numerical examples,

and Section 6 contains a discussion of the generality of the schemes presented.

2 Analytical Preliminaries

In this section, we summarize several known facts about classical Special functions. All

of these facts can be found in the literature; detailed references are given in the text.

2.1 Chebyshev systems

Definition 2.1 A sequence of functions ¢, ..., ¢, will be referred to as a Chebyshev
system on the interval [a, b] if each of them is continuous and the determinant
$1(z1) - Su(zn)
; P (7)

is nonzero for any sequence of points x1,...,ZT, such thata <z, <Z3...<zp, <b.

An alternate definition of a Chebyshev system is that any linear combination of the
functions with nonzero coefficients must have no more than n zeros.
Examples of Chebyshev and extended Chebyshev systems include the following (ad-

ditional examples can be found in [8]).

Example 2.1 The powers 1,z,22,...,2" form an extended Chebyshev system on the

interval (—o0,00).

Example 2.2 The ezponentials e 1% e~22% ... e~ form an extended Chebyshev sys-

tem for any A1, ..., An > 0 on the interval [0, 00).

Example 2.3 The functions 1, cos z, sin z, cos 2z, sin 2z, . . . , cos nz, sin nx form a Cheby-

shev system on the interval [0, 27).




Example 2.4 Suppose that ¢ > 0 is a real number, w is a positive function [-1,1] = R
such that w € c¢'[-1,1] and w(—z) = w(z) for all z € [~1,1], n is a natural number,
and the operators P,Q : L?[-1,1] — L?[-1,1] are defined by the formulae

P@)@) = [ wle) =t (1) at ®
Q=P oP. 9)

Suppose further that ¢y,@s,... are the eigenfunctions of @, A1, X, ... are the corre-
sponding eigenvalues, and A\; > Ay > A3.... Then all eigenfunctions of Q (also known
as the right singular vectors of P) can be chosen to be real. Furthermore, the functions

b1, 02, ..., bn constitute a Chebychev system on the interval [-1,1].

2.2 Generalized Gaussian quadratures

A quadrature rule is an expression of the form
n
> w; - 4(z;), (10)
j=1
where the points z; € R and coefficients w; € R are referred to as the nodes and weights

of the quadrature, respectively. They serve as approximations to integrals of the form

/ab #(z) - w(z)dx (11)
with w is an integrable non-negative function.

Quadratures are typically chosen so that the quadrature (10) is equal to the desired
integral (11) for some set of functions, commonly polynomials of some fixed order. Of
these, the classical Gaussian quadrature rules consist of n nodes and integrate polynomi-
als of order 2n — 1 exactly. In [13], the notion of a Gaussian quadrature was generalized

as follows:

Definition 2.2 A gquadrature formula will be referred to as Gaussian with respect to a
set of 2n functions ¢y, ..., ¢ : [a,b] = R and a weight function w : [a,b] — R*, if it
consists of n weights and nodes, and integrates the functions ¢; ezactly with the weight
function w for alli=1,...,2n. The weights and nodes of a Gaussian quadrature will be

referred to as Gaussian weights and nodes respectively.

4




The following theorem appears to be due to Markov [15, 16]; proofs of it can also be

found in [10] and [8] (in a somewhat different form).

Theorem 2.1 Suppose that the functions ¢y,...,¢2, : [a,b] = R form a Chebyshev
system on [a,b]. Suppose in addition that w : [a,b] — R is a non-negative integrable
function [a,b] = R. Then there ezists a unique Gaussian quadrature for the functions
B1y- - -, Pon O [a, ] with respect to the weight function w. The weights of this quadrature

are positive.

Remark 2.1 While the existence of Generalized Gaussian Quadratures was observed
more than 100 years ago, the constructions found in [15, 16], [3, 10], [7, 8] do not easily
yield numerical algorithms for the design of such quadrature formulae; such algorithms
have been constructed recently (see [13, 28, 2]). The version of the procedure found in
[2] was used to produce the results presented in the Examples 5.1, 5.2, 5.3 in Section 5.1;

the reader is referred to [2] for details.
Applying Theorem 2.1 to the Example 2.4, we obtain the following theorem.

Theorem 2.2 Suppose that under the conditions of Erample 2.4, n is even. Then

there ezist n/2 points t1,ts,...,tn2 on the interval [—1,1] and positive real numbers
w1, Wa, . .., Wyy2 Such that
1 n/2
[w®) o) dt =Y ;- aitty), (12)
21 j=1

foralli = 1,2,...,n, with ¢1,¢s,...,¢, the first n eigenfunctions of the operator Q
defined in (9).

Corollary 2.3 The above theorem provides a tool for the efficient approzimate evalua-

tion of integrals of the form (12), as follows. Given a positive real €, we construct the




Singular Value Decomposition of the operator P defined in (8). Choosing n to be the
smallest even integer such that
= 42 _ .2

j-—Zn-f-l A< e (13)
we construct an n/2-point quadrature that integrates n first right singular functions ez-
actly (effective numerical schemes for the construction of such quadratures can be found
in [13, 28, 2]). Now, we observe that due to the triangle inequality combined with the
positivity of the obtained weights wy, wo, ..., W2,

n/2

IS wj-ebe®b — [ w(z) et dt] <€ (14)
j=1

UG

for any z € [-1,1].

Remark 2.2 The principal subject of this note is the fact that the pattern of an antenna
~array is formed by a physical process amounting to a hardware implementation of a
quadrature formula for functions of the form (9). Thus, designing a configuration of
elements for such an antenna is equivalent to constructing a quadrature formula for

functions of the form( 9), and can be achieved via the techniques described in [13, 28, 2}).

3 Elements of Antenna Theory

In this section, we summarize certain facts about the theory of linear antenna arrays; all

of these facts are well-known, and can be found, for example, in [9].

3.1 Pattern of a linear array

A source distribution o on the interval [—1,1] creates the far-field pattern f : [0,7] — C

given by the formula

1
£(6) = / o(u) - ekveos® gy, (15)
-1




where k is the free-space wavenumber, u is the point on the interval [—1, 1], and 6 is the
angle between the point on the horizon where the far field is being evaluated and the

z-axis. It is customary to introduce the notation

z = cos(h), (16)
and define the function F : [-1,1] — C by the formula

F(z) = f(acos(z)). (17)

Now, defining the operator A : L?[—1,1] — L%[~1,1] by the formula

A(o)(z) = /o(u) ceiFuT gy, (18)
we observe that
F=A(o) = /a(u) erEuT gy, (19)

The function F is usually more convenient to work with than f, and the following obvious

lemma is the principal reason for this difference.

Lemma 3.1 Suppose that o € L?[—1,1], the function F € L*|-1,1] is defined by (19),

a is a real number, and the function & € L?[~1,1] is defined by the formula

F(u) = €** - o(u). (20)
Then

A3)@) = A©)(& - a) (21)

for allz € (—00,00). In other words, in order to translate the antenna pattern F' (viewed
as a function of x = cos(f) ) by «, one has to multiply by e"** the source distribution o

generating the pattern F'.




Observation 3.1 While the obvious physical considerations lead to the antenna pattern
F defined on the interval [-1,1], the formulae (15), (17) also define naturally the exten-
sion of F to the function R — C; in a mild abuse of notation, we will be denoting by F
both the original mapping [-1,1] — C and its extension to the mapping R — C. Simi-
larly, we will be denoting by A both the operator L?[-1,1] — L?*[-1,1] defined by (18)
and its natural extension mapping L2[—1,1] = ¢®(R). The restriction of F on R\[-1,1]
is referred to as the invisible spectrum of the source distribution o and plays an important
role in the antenna theory (this role is discussed briefly in the following subsection). By
the same token, the restriction of F on the interval [-1,1] is referred to as the visible

spectrum.

When an antenna array is implemented in hardware, it is (usually) constructed of
a finite collection of elements, as opposed to being a continuous source distribution.
Mathematically, it is equivalent to replacing the general function o in (15), (19) with o

defined by the expression

n
a(z) =) B;- ¢i(u), (22)

=1
with ¢, @s, ..., ¢, the source distributions generated by individual elements, and the
coefficients B, Bz, ..., P the intensities of the elements. As a rule, the elements are

localized in space (i.e. the functions ¢y, ¢2,...,#, are supported on small subintervals
of [—1,1]), and very often, all of the elements are identical (i.e. the functions ¢; are

translates of each other), so that
¢;(u) = ¢(u — u;), (23)

with ¢ the source distribution of a single element located at the point u =0, and u; the
location of the element number j. Obviously, the far-field pattern of ¢ is given by the

formula

1

Fyla) = [ ¢w)-e**= du; (24)

-1




combining (24) with (22) and (23), we obtain the identity

1

o) = [ 6(w)- 4= du- 3oy et (25)

A Jj=1

known in the antenna theory as the principle of pattern multiplication.

Remark 3.2 The standard form of the principle of multiplication reads: “The field
pattern of an array of nonisotropic but similar point sources is the product of the pattern
of the individual source and the the pattern of an array of isotropic point sources, having
the same locations, relative amplitudes and phases as the nonisotropic point sources” (see
[9]). Needless to say, this is a special case of the well-known theorem from the theory of
the Fourier Transform, stating that the Fourier transform of the product of two functions

is the convolution of the Fourier Transforms of multiplicants.

4 Antenna Patterns and Corresponding Optimal El-
ement Distributions

4.1 Characteristics of an antenna pattern

Depending on the situation, the design of an antenna array attempts to optimize certain
characteristics of the resulting far-field pattern, subject to certain constraints on the
number, power, etc. of the elements. Since the principal purpose of this note is to
describe a technique for the selection of the locations of the elements that approximate a
user-specified pattern, we could use any reasonable far-field pattern to be approximated.
In subsection 4.2, 4.3, we construct optimal element distributions for the so-called sector
patterns and cosecant pattern, respectively; a detailed discussion of these (and several
other) pattern cans be found, for example in [14].

We will say that the antenna pattern has the e-bandwidth b if

|F(2)? dz = ¢ - / |F(2)[? dz (26)

b<|lz{|<1




in other words, the proportion of the energy radiated outside the e-beamwidth from the
axis of the beam is equal to e. The supergain of an antenna is defined (see, for example,
[27]), as the ratio

Z" |F(2)[? dz

JIF@P ds "
The supergain (sometimes referred to as superdirectivity) measures the ratio of the en-
ergy associated with the total spectrum of the antenna to the energy in its visible spec-
trum; while detailed discussion of supergain and related issues is outside the scope of this
note, we will observe that antenna arrays with large degrees of supergain would violate
the uncertainty principle, and thus are physically impossible. Attempts to construct
supergain antennae result in rapidly (exponentially) growing Ohmic losses, prohibitive
accuracy requirements, extremely low bandwidth, etc. Thus, any potentially useful pro-

cedure for the design of antenna arrays has to limit the supergain of the resulting patterns.

4.2 Sector patterns

It is often desirable to construct antenna patterns that are as constant as possible within
the main beam, and as small as possible outside it; in other words, ideally, the pattern

would be defined by the formulae
Fy(z) =1 for |z| <, (28)
Fy(z) =0 for |z|>0b, (29)

with b a real number such that 0 < b < k. Needless to say, the function F; defined by
the formulae (28), (29) is not band-limited, and some approximation has to be used. A
standard procedure is to truncate the Fourier Transform of F}, approximating it by the

function F, defined by the formula

F‘b(g;) _ /_‘-11 sm(tb . t) . ei.k.z.t (30)

10




(see, for example, [26]). An important special case occurs when b = k, with (30) assuming
the form

Fi(z) = /—11 izﬁﬁf_i) gk, (31)
obviously, the latter expression is a band-limited approximation of the é-function. An-
other frequently encountered situation is that of b = k/2, so that (30) assumes the form

1 gin(k. .
Ale) = [} 2 g | (32)

which is a band-limited approximation to the beam that is equal to 1 for —1/2 < z < 1/2
and to zero elsewhere.
In Section 4.4 below, we demonstrate optimal element configurations that produce

approximations to the patterns (31), (32) with k = 20w, 107, 32.4676.

Remark 4.1 While (30) is by no means the only possible band-limited approximations
to to Fy, it is quite satisfactory iﬁ most cases, in addition to being simple. Furthermore,
the principal purpose of this note is to describe a technique for the selection of locations
of the nodes, given a pattern to be approximated. Thus, we ignore the issue of the

optimal choice of F;.

4.3 Cosecant patterns

Another standard far-field radiation pattern is the so-called cosecant pattern (see, for
example, [19]). Given two real numbers 0 < a < b < 1, the cosecant pattern Fy is

defined by the formula
1

Fuple) = (33)
for all z € [a, b], and
Fop(z) =0 - (34)

11



for all z € ([—1,1]\ [a,b]). Again, the function F,, defined by the formulae (33), (34) is
not band-limited, and can not be represented by the expression of the form (24). Before
the scheme of this note can be applied to F,, the latter has to be approximated with a
band-limited function; as discussed in Section 4.1 above, if such an approximation is to
be useful as an antenna pattern, its supergain factor has to be controlled. Fortunately,
a procedure for such an approximation has been in existence for more than 35 years
(see, [18]); the algorithm of [18] is a modification of the least-squares approach permitting
the user to limit the supergain factor of the obtained pattern ezplicitly. At the time, the
utility of the scheme of [18] was limited by the (perceived) difficulty in the numerical
evaluation of Prolate Spheroidal Wave functions; given the present state of numerical
analysis, this difficulty is non-existent, and it is this author’s impression that the insights

of [18], [19] deserve more attention than they have been receiving.

4.4 Optimal distributions of elements

In this subsection, we briefly describe an algorithm for the construction of optimal (in
the sense defined below) element configurations for the generation of antenna patterns
given by (15), of which the patterns (29)-(31) are special cases. As will be seen, the
procedure is in fact applicable to the design of element configurations for very general

far-field patterns.
We start with observing that (15) expresses the far-field pattern F' as an integral over

the interval [—1, 1] of functions of the form
o(u) - e*o, (35)

with z = cos(#) determined by the direction 6 in which the far-field is being evaluated. In
other words, the problem of finding efficient antenna element distributions is equivalent

to that of constructing quadrature formulae for integrals of the form (8), with

w(t) = o(t). (36)

12




In the cases when o is non-negative everywhere on the interval [—1,1], Theorem 2.2
guarantees the existence of Generalized Gaussian Quadratures, and [13, 28]) provide a
satisfactory numerical apparatus for the construction of such quadratures. Obviously, the
patterns given by the formula (28) are not generated by non-negative source distributions,

except when
b< . (37)

Thus, for these (and many other) patterns, the conditions of Theorem 2.2 are violated,
and the existence of Generalized Gaussian Quadratures is not guaranteed. In our numer-
ical experiments, the techniques of [2]) (after some tuning) have always been successful
in finding the Gaussian quadratures for integrals of the form (28); some of our results

are presented in Section 5 below.

5 Numerical Examples

In this section, we present examples of optimal element distributions generating the
patterns of the preceding Section; all of the results presented here have been obtained
numerically. Antenna patterns we present are compared to the antenna patterns given
by uniform source distributions; configurations of elements approximating these antenna
patterns are compared to equispaced distributions of elements generating the same an-

tenna patterns.

5.1 Optimal distributions of elements

In this section, we demonstrate the results of the application of the techniques of Sec-
tion 4.4 of this note to the types of antenna patterns described in the Sections 4.2, 4.3.

In all cases, we choose the size of an antenna array and a pattern to be reproduced, and
use the scheme outlined in Section 4.4 to design a distribution of antenna elements (both
the locations and the intensities) located within the chosen array that reproduces the

required pattern. For comparison, we also generate optimal (in the least squares sense)

13




approximations to the desired pattern generated by equispaced elements located within
the same array. Since the number of equispaced nodes required to obtain a reasonable
approximation to the desired pattern is (in many cases) much greater than the number of
optimally chosen nodes, for each example we demonstrate patterns generated by several
such configurations. In this manner, the numbers of optimally chosen nodes necessary
to obtain reasonable approximations to the desired patterns can be compared to the

numbers of equispaced nodes required to obtain similar results.

5.1.1 Sector patterns

Example 5.1 The first ezample we consider is of the pattern defined by the formula ( 32),
with k = 62.8312, so that the size of the array is 20 wavelengths.

In Figure 5, we display an approzimation to the pattern obtained with 19 elements,
overlayed with the ezact pattern; the locations of the elements are displayed in Figure 5a;
the relative error of the obtained approrimation is 5.01%.

Similarly, in Figure 59, we display the approzimation to the pattern obtained with 21
elements, overlayed with the ezact ’pattern; the relative error of the obtained approzima-
tion is 0.443%; in Figure 5h, we display the the approzimation obtained with 17 elements.
In the latter case, the relative error of the obtained approzimation is 6.43%; Figure 5i
depicts the 17-node distribution producing the approzimation illustrated in Figure 5h.
Finally, Figure 5j contains a graph of the values of the sources located at the 17 nodes
depicted in Figure 5i and generating the pattern shown in Figure 5h.

For comparison, the optimal approzimation obtained with 19, 24, 29, 31, and 34
equispaced elements are displayed in Figures 5b, 5¢, 5d, 5e, 5f, respectively; these are

also overlayed with the exact pattern.

Example 5.2 Our second ezample is identical to the first one, with the ezception that
k = 31.416, so that the size of the array is 10 wavelengths.

In Figure 6, we display an approzimation to the pattern obtained with 9 elements,
overlayed with the ezact pattern; the locations of the elements are displayed in Figure 6a;

the relative error of the obtained approzimation is 11.2%.
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Similarly, in Figure 6f, we display the approzimation to the pattern obtained with 11
elements, overlayed with the ezact pattern; the relative error of the obtained approzima-
tion s 0.600%.

For comparison, the optimal approzimation obtained with 9, 14, 16, and 18 equispaced
elements are displayed in Figures 6b, 6c, 6d, 5e, respectively; these are also overlayed

with the exact pattern.

Example 5.3 Our third ezample is identical to the preceding two, with the ezception
that k = 102, so that the size of the array is about 32.45 wavelengths.

In Figure 7a, we display an approzimation to the pattern obtained with 23 optimally
distributed elements, overlayed with the ezact pattern and with the pattern obtained with
23 equispaced elements.

The relative error of the obtained approzimation is 5.4%; needless to say, the error of
the approzimation obtained with the equispaced nodes is more than 70%. As can be seen
from Figure 7c, the actual size of the obtained 23-element array is about 21 wavelengths;
in other words, in order to obtain this precision, the array needs to be about 2/3 of the
nominal (mazimum permitted) length.

In Figure 7b, we display the approrimation to the pattern obtained with 42 and 48
elements, overlayed with the exact pattern.

It is worth noting that with 33 optimally distributed elements, the pattern is approzi-
mated to the precision 0.12%; we do not display the obtained pattern since it is visually

indistinguishable from the pattern being approzimated.

Example 5.4 Our final ezample is somewhat different from the preceding ones, in that
instead of approzimating a sector pattern, we approzimate a cosecant pattern (see (33), (34)
in Subsection 4.3 above).

In this example, we set
a = sin(15°), (38)
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b = sin(75°), (39)

and use the procedure of [18] to approzimate F, with a band-limited function. The band-
limit has been more or less arbitrarily set to 110, resulting in an antenna arrdy about 35
wavelengths in size, and the supergain factor of the approzimation was set to 1.1.

In Figure 8a, we display an approrimation to the pattern obtained with 53 optimally
distributed elements, overlayed with the ezact bandlimited pattern and with the pattern
obtained with 53 equispaced elements. |

The relative error of the obtained approzimation is 1.79%; the error of the approxi-
mation obtained with the equispaced nodes is about 42%.

In Figure 8b, we display the approzimation to the pattern obtained with 47 optimally
distributed elements, overlayed with the ezact pattern; the purpose of this final figure is
to demonstrate the behavior of the scheme when the number of elements is insufficient
(i.e. when the array is underresolved).

It i's worth noting that it takes about 70 equispaced nodes to obtain the resolution

obtained with 47 optimally chosen ones.

The following observations can be made from Figures 5 - 8b, and from the more

detailed numerical experiments performed by the author.

1. In order to obtain reasonable precision, the scheme requires about 1 point per wave-
length in the antenna array; this is more or less independent from the structure of the
beam as long as the pattern is symmetric about the point z = 0. This fact is observed
numerically, even for modest numbers of nodes; for large-scale arrays, this statement
(interpreted asymptotically) can be proved rigorously. For certain beam structures, the
required number of nodes is even less (see Example 5.3). The reasons for these additional
savings are subtle, and have to do with the fact that the continuous source distribution
generating the pattern is relatively small on a large part of the antenna array; the al-
gorithm of [2] takes advantage of this fact to reduce the number of nodes. When the

beam is not symmetric about z = 0, the number of elements required does depend on
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the structure of the pattern, and the dependence is fairly complicated. Generally, the

improvement for non-symmetric beams is less than that for the symmetric ones.

2. The qualiative behavior of the scheme is similar to that of the Gaussian quadratures
in that it displays no convergence at all until a certain minimum number of nodes is
achieved; after that, the convergence is very fast. This behavior is not surprising, since

the scheme is based on a Generalized Gaussian quadrature.

3. For the sector pattern with the sector [~1/2,1/2], the scheme reduces the required
number of nodes by a factor of about 1.5 for small-scale problems, and roughly by a
factor of 2 for large-scale ones; again, for large-scale problems, an asymptotic version of

this statement can be proven rigorously.

4. For the cosecant pattern with the parameters specified by (38), (39), the number
of nodes required is reduced by approximately a factor of 1.4. As the sidelobe level is
reduced, the improvement obtained by going from the equispaced discretization to the

optimal one increases rapidly.

5. An examination of Figures 5a, 6a shows that while the optimal nodes are by no means

uniform, they display no clustering behavior.

6. An examination of Figure 5j shows that the intensities of individual elements do not
become large; this is confirmed by the more extensive numerical experiments performed
by the author.

7. The combination of the preceding two paragraphs (combined with additional numer-
ical experiments and analysis) provide evidence that configurations of this type should

pose no supergain problems.

6 Generalizations

The results described above admit radical generalizations in several directions; several

such directions are discussed below,
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1. Conformal one-dimensional arrays. The extension of the techniques of this note
to one-dimensional arrays located on curves in R? is completely straightforward, involving
only a modest increase of the CPU time requirements of the procedure. Improvement in
the number of nodes required to produce a prescribed pattern is similar to that in the

case of a linear array.

2. Planar two-dimensional arrays. A straightforward generalization of the results of
Sections 4, 5, is to rectangular planar arrays. Here, a tensor product quadrature can be
constructed from the quadratures of Sections 4, 5, possessing all of the desirable prop-
erties of the latter. Obviously, the advantage in the number of transducers is squared,
so that (for example) replacing 50 nodes in each of the two directions by 23 nodes (see
Example 5.3 above) will lead to a factor of (50/23)% ~ 4.7 savings in the number of
elements.

The theory of Section 4 has been extended for disk-shaped arrays, via (inter alia) the
techniques developed in [23]. The improvement in the number of nodes is comparable to
that obtained in the rectangular geometry, and the CPU time requirements do not differ
appreciably from those in the case of linear one-dimensional arrays.

The extension of the theory to more general geometries in the plane is in progress. At
the present time, our only numerical experiments have been with arrays on triangles; the
results are encouraging, but the CPU time requirements of the algorithms are excessive
(we have only been able to design triangular arrays about 6 wavelengths in size). We
are now in the process of constructing a more efficient numerical procedure for such

computations.

3. Conformal two-dimensional arrays. The only environment in which we have
a satisfactory theory is when the array is located on a surface of revolution; even in
this environment, no experiments have been performed. We have not investigated more

general conformal two-dimensional arrays in sufficient detail.
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Figure 5: The pattern created by the 19 optimal elements, depicted in Figure
5a as described in Example 5.1
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0 6 e ¢ 0 ¢ o o 000 0 0 0 0 o o oo -
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1 1 L \
-1 -0.5 0 0.5 1

Figure 5a: The distribution of elements creating the pattern depicted in
Figure 5, as described in Example 5.1
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Figure 5b: The optimal approximation to the sector pattern generated by 19
equispaced nodes, as described in Example 5.1
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Figure 5¢: The optimal approximation to the sector pattern generated by 24
equispaced nodes, as described in Example 5.1
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Figure 5d: The optimal approximation to the sector pattern generated by 29
equispaced nodes, as described in Example 5.1
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Figure 5e: The optimal approximation to the sector pattern generated by 31
equispaced nodes, as described in Example 5.1
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Figure 5f: The optimal approximation to the sector pattern generated by 34
equispaced nodes, as described in Example 5.1
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Figure 5g: The optimal approximation to the sector pattern generated by 21
optimal nodes, as described in Example 5.1
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Figure 5h: The optimal approximation to the sector pattern generated by 17
optimal nodes, as described in Example 5.1
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Figure 5i: The distribution of 17 elements creating the pattern depicted in
Figure 5h, as described in Example 5.1
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Figure 5j: The values of the sources located at the nodes depicted in Figure 5i
and generating the pattern depicted in Figure 5h, as described in Example 5.1
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Figure 6: The pattern created by the 9 optimal elements, depicted in Figure
6a as described in Example 5.2
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Figure 6a: The distribution of elements creating the pattern depicted in
Figure 6, as described in Example 5.2
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Figure 6b: The optimal approximation to the sector pattern generated by 9
equispaced nodes, as described in Example 5.2
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Figure 6¢c: The optimal approximation to the sector pattern generated by 14
equispaced nodes, as described in Example 5.2
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Figure 6d: The optimal approximation to the sector pattern generated by 16
equispaced nodes, as described in Example 5.2

Figure 6e: The optimal approximation to the sector pattern generated by 18
equispaced nodes, as described in Example 5.2
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Figure 6f: The pattern created by the 11 optimal elements, in Example 5.2
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Figure 7a: The approximation to the sector pattern generated by 23 optimal
elements, vs. optimal approximation by 23 equispaced nodes, as described in
Example 5.3
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Figure 7b: The optimal approximations to the sector pattern generated by 42
and 48 equispaced nodes, as described in Example 5.3
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equispaced

Figure 8a: The approximation to the cosecant pattern generated by 53
optimal elements, vs. optimal approximation by 53 equispaced nodes, as
described in Example 5.4

Figure 8a: The approximation to the cosecant pattern generated by 47
optimal elements, as described in Example 5.4
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On the compression of low rank matrices
H. Cheng, Z. Gimbutas, P.G. Martinsson, V. Rokhlin

Abstract: A procedure is reported for the compression of rank-deficient
matrices. A matrix A of rank k is represented in the form 4 = UoBoV,
where B is a k X k submatrix of A, and U, V are well-conditioned
matrices that each contain a k x k identity submatrix. This property
enables such compression schemes to be used in certain situations where
the SVD cannot be used efficiently. Numerical examples are presented.

1. INTRODUCTION

In computational physics (and many other areas), one often encounters matrices whose ranks
are (to high precision) much lower than their dimensionalities; even more frequently, one is con-
fronted with matrices posessing large submatrices that are of low rank. An obvious source of such
matrices is the potential theory, where discretization of integral equations almost always results in
matrices of this type. Such matrices are also encountered in fluid dynamics, numerical simulation
of electromagnetic phenomena, structural mechanics, multivariate statistics etc. In such cases, one
is tempted to “compress” the matrices in question, so that they could be efficiently applied to arbi-
trary vectors; compression also facilitates the storage and any other manipulation of such matrices
that might be desirable.

At this time, several classes of algorithms exist that use this observation. The so-called Fast
Multipole Methods (FMMs) are algorithms for the application of certain classes of matrices to
arbitrary vectors; FMMs tend to be extremely efficient, but are only applicable to very narrow
classes of operators (see [7]). Another approach to the compression of operators is based on the
wavelets and related structures (see, for example, [3, 2]); these schemes exploit the smoothness
of the elements of the matrix viewed as a function of their indices, and tend to fail for highly
oscillatory operators.

Finally, there is a class of compression schemes that are based purely on linear algebra, and are
completely insensitive the the analytical origin of the operator. It consists of the Singular Value
Decomposition (SVD), the so-called QR and QLP factorizations [8], and several others. Given an
m X n-matrix A of rank k < min(m,n), the SVD represents A in the form

(1.1) A=UoDoV,

with U an m x k, matrix whose columns are orthonormal, V a k x n matrix whose rows are
orthonormal, and D a diagonal matrix whose diagonal elements are positive. The compression
provided by the SVD is perfect in terms of accuracy (see, for example, [5]), and has a simple
geometric interpretation: it expresses each of the columns of A as a linear combination of the k
(orthonormal) columns of U; it also represents the rows of A as linear combinations of (orthonormal)
rows of V; and the matrices U,V are chosen in such a manner that the rows of U are images (up
to a scaling) under A of the columns of V.

In this paper, we propose a different matrix decomposition. Specifically, we represent the matrix
A described above in the form

(1.2) A=UoBoV,
1




where B is a k x k-submatrix of A4, and the norms of the matrices U,V (of dimensionalities n x k,
k x m respectively) are reasonably close to 1 (see Theorem 3 in Section 3 below). Furthermore,
each of the matrices I/, V contains a unity k x k submatrix.

Like (1.1), the representation (1.2) has a simple geometric interpretation: it expresses each of
the columns of A as a linear combination of k selected columns of A, and each of the rows of A as
a linear combination of k selected rows of A. This selection defines a k x k submatrix B of A, and
in the resulting system of coordinates, the action of A is represented by the action of its submatrix
B.

The representation (1.2) has the advantage that the bases used for the representation of the
mapping A consists of the columns and rows of A, while each of the elements of the bases in the
representation (1.1) is itself a linear combination of all rows (or columns) of the matrix A. In
Section 5, we illustrate the advantages of the representation (1.2) by constructing an accelerated
direct solver for integral equations of potential theory.

Another advantage of the representation (1.2) is that the numerical procedure for constructing
it is considerably less expensive than that for the construction of the SVD (see Section 4), and that

the cost of applying (1.2) to an arbitrary vector is

(1.3) (n+m-—k)- -k
VS.

(1.4) (n+m)-k
for the SVD.

The obvious disadvantage of (1.2) vis-a-vis (1.1) is the fact that the norms of the the matrices
U,V are somewhat greater than 1, leading to some (though minor) loss of accuracy. Another
disadvantage of the proposed factorization is its non-uniqueness; in this respect it is similar to the
pivoted QR factorization.

Remark 1. In (1.2), the submatrix B of the matrix A is defined as the intersection of k columns
with k rows. Denoting the sequence numbers of the rows by 41,12, ..., and the sequence numbers
of the columns by 41, jo, . . - , jk, We will be referring to the submatrix B of A as the skeleton of A,
to the k x n matrix consisting of the rows of A numbered 41,12, ...,% as the row skeleton of A, and
to the m x k matrix consisting of the columns of A numbered j, j2,. . ., jk as the column skeleton

of A.

The structure of this paper is as follows. Section 2 below summarizes several facts from numerical
linear algebra to be used in the remainder of the paper. In Section 3, we prove the existence of
a stable factorization of the form (1.2). In Section 4, we describe a reasonably efficient numerical
algorithm for constructing such a factorization. In Section 5, we illustrate how the geometric
properties of the factorization (1.2) can be utilized to construct an accelerated direct solver for
integral equations of potential theory. In Section 6, we present the results of numerical experiments
with the direct solver. Finally, Section 7 contains a discussion of other possible applications of the

techniques of this paper.

2. PRELIMINARIES

In this section we introduce our notation and summarize several facts from numerical linear
algebra; these can all be found in [1].
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Throughout the paper, we use upper case letters for matrices and lower case letters for vectors
and scalars. We reserve @ for matrices that have orthonormal columns and P for permutation
matrices. The canonical unit vectors in C” are denoted by e;. Given a matrix X, we let X* denote
its adjoint (the complex conjugate transpose), ox(X) its k-th singular value, || X]||2 its [2-norm and
|| X ||F its Frobenius norm. Finally, given matrices A, B, C and D we let

2.1) [41B], [_g_} and [%{f_],

denote larger matrices obtained by stringing the blocks A, B, C and D together.

The first result that we present asserts that given any matrix A, it is possible to reorder its
columns to form a matrix AP, where P is a permutation matrix, with the following property:
When AP is factorized into an orthonormal matrix @ and an upper triangular matrix R, so that
AP = QR, then the singular valucs of the leading k£ X k submatrix of R are reasonably good
approximations of the first £ singular values of A. The theorem also says that the first ¥ columns
of AP form a well-conditioned basis for the column space of A to within accuracy og41(A).

Theorem 1. [Gu & Eisenstat] Suppose that A is an m X n matriz, | = min(m,n), end k is an
integer such that 1 < k <1. Then there exists a factorization
(2.2) AP = QR,

where P is an n X n permutation matriz, @ is an m x | matriz with orthonormal columns, and R
is an | X n upper triangular matriz. Furthermore, splitting @ and R,

_ | Qu | Qr2 _{ Bu | Rio
(2:3) Q= [ Qa1 | Q22 ] ’ and  R= [ 0 | Ree ] ’

in such a fashion that Q11 and Ry are of size k x k, Q21 is (m—k) Xk, Q12 isk x ({ — k), Qo2 s
(m—k)x (l—k), Rz is kx (n—k) and Ry is (I — k) X (n—k), results in the following inequalities:
1

Vi+k(n—k)
(2.5) 01(Ry2) < ok41(4)V1 + k(n — k),

and
(2.6) IR Rualle < VE(n = k).

Remark 2. In this paper we do not use the full power of Theorem 1 since we are only concerned
with the case of very small € = 0,41(A). In this case, the inequality (2.5) implies that A can be
well approximated by a low-rank matrix. In particular, (2.5) implies that

(2.7) |4 - [ 8; ] [R11| Riz] P*ll2 < e/1+k(n — k).

Furthermore, the inequality (2.6) in this case implies that the first k¥ columns of AP form a well-
conditioned basis for the entire column space of A (within accuracy ¢).

(2.4) ok(R11) 2 ok(4)

While Theorem 1 asserts the existence of a factorization (2.2) with the properties (2.4), (2.5),
(2.6), it says nothing about the cost of constructing such a factorization numerically. The following
theorem asserts that a factorization that satisfies bounds that are weaker than (2.4), (2.5), (2.6)

by a factor of 4/n can be computed in O(mn?) operations.
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Theorem 2. [Gu & Eisenstat] Given an m x n matriz A, a factorization of the form (2.2) that
instead of (2.4), (2.5) and (2.6) satisfies the inequalities
1

(2.8) ok(R11) 2 mak(
(2.9) o1(R2) £ V1 +nk(n — k)ok41(4),

and

(2.10) IR Rizllr € Vnk(n — k),

can be computed in O(mn?) operations.

A),

3. ANALYTICAL APPARATUS

In this section we prove that the factorization (1.2) exists by applying Theorem 1 to both the
columns and the rows of the matrix A. Theorem 2 then guarantees that the factorization can be

computed efficiently.

The following theorem is the principal analytic tool of this paper.
Theorem 3. Suppose that A is an m x n matriz and let k be such that 1 <k < min(m,n). Then
there exzists a factorization

(3.1) A=P, [%] As [I|T) PE + X,

where I € CEXK is the identity matriz, P, and Pg are permutation matrices, and As is the top left
k x k submatriz of PFAPr. In (3.1), the matrices S € Clm=k)xk gnd T € Ck*(n—k) satisfy the

inequalities

(3.2) ISllr < VEGm—k),  end  ||T|le < VEm —F),
and the matriz X is small if the (k + 1)-th singular value of A is small,
(3.3) 1X1l2 < ok+1(4)V/1 + k(min(m,n) — k).

Proof: The proof consists of two steps. First Theorem 1 is invoked to assert the existence of k
columns of A that form a well-conditioned basis for the column space within accuracy ox4+1(A);
these are collected in the m x k matrix Acs. Then Theorem 1 is invoked again to prove that k
of the rows of Acs form a well-conditioned basis for its row space. Without loss of generality, we

assume that m > n and that ox(A) # 0.
For the first step we factor A into matrices Q and R as specified by Theorem 1, letting Pr denote

the permutation matrix. Splitting @ and R into submatrices Q;; and R;; as in (2.3), we reorganize
the factorization (2.2) as follows,

(3.4) APy = [_g_;%_] [Rua| Rug) + [-g%] [0] Bzz] = [—8—;—%—] 1] By Rug] + H——g Gl ] .

We now define the matrix T € C*("=*) via the formula

(3.5) T = Ry} Riz;
4




T satisfies the inequality (3.2) by virtue of (2.6). We define the matrix X € C™*" via the formula

0| Q2R ] "
. X = | —+=2""| Pg,
(3.6) [ 0]QuRy |°R
which satisfies the inequality (3.3) by virtue of (2.5). Defining the matrix Acs € C™** by
[ QuRn ]
. Acs = | =—=—,
(8.7) S~ [ QuEn

we reduce equation (3.4) to the form
(3.8) APg = Acs [I|T] + X Pr.

An obvious interpretation of (3.8) is that Acs consists of the first k columns of the matrix APr
(since the corresponding columns of X P are identically zero).

The second step of the proof is to find & rows of Acs forming a well-conditioned basis for its
row-space. To this end, we factor the transpose of Acs as specified by Theorem 1,

(3.9) &P =Q [Rul ﬂlz] :

Transposing (3.9) and rearranging the terms we have

* R’;l Ak I D* A*
(3'10) PLACS = * Q= * * \—1 llQ .
12 12(Ri1) »
Multiplying (3.8) by P* and using (3.10) to substitute for P! Acs we obtain

(3.11) PEAPR=[ ! ]“LQ*[IITHPI?XPR.

Ry (R~
We now convert (3.11) into (3.1) by defining the matrices As € C¥*¥ and § € C("~%)Xk yia the
formule
(3.12) As=RYQ*, and S=Rb(RN)
respectively. 0

Remark 3. While the definition (3.5) serves its purpose within the proof of Theorem 3, it is
somewhat misleading. Indeed, it is more reasonable to define T' as a solution of the equation

(3.13) [[R11T — Rialle < ok+1(A)V1 + k(n — k).
When the solution is non-unique we chose a solution that minimizes ||T’||r. From the numerical

point of view, the definition (3.13) is much preferable to (3.5) since it is almost invariably the case
that Ry is highly ill-conditioned, if not outright singula.r.

Introducing the notation

(3.14) Acs = PR, [—gv—-] Ag € CxF, and Ars=As[I|T] P e Cckxm,

we observe that under the conditions of Theorem 3, the factorization (3.1) can be rewritten in the
forms

(3.15) A= Acs [I| T] P+ X,
5




and
(3.16) A=R [_é,-] Ags + X.

The matrix Acs consists of k of the columns of A, while Agrg consists of k of the rows. We refer to
Ag as the skeleton of A, and to Acs and Ags as the column and row skeletons, respectively.

Remark 4. While Theorem 3 guarantees the existence of a well-conditioned factorization of the
form (3.1), it says nothing about the cost of obtaining such a factorization. However, it follows
immediately from Theorem 2 that a factorization (3.1) with the matrices S, T', and X satisfying

the weaker bounds

(3.17) ISllz € Vink(m=F),  and  [ITll2 < v/nk(n — k),
and, with | = min(m,n),

(3.18) [1X|l2 € VI +1k( = K)oks1(4),

can be constructed at the cost O(mnl).

Observation 1. The relations (3.1), (3.15), (3.16) have simple geometric interpretations. Specif-
ically, (3.15) asserts that for a matrix A of rank k, it is possible to select k columns that form a

well-conditioned basis of the entire column space. Let j1,...,Jk € {1,...,n} denote the indices of

those columns and let Xy = span(ej,,...,e;) € C* (thus, X is the space of vectors whose only
non-zero coordinates are zj,,...,z;,). According to Theorem 3, there exists an operator
(3.19) Proj : C" — X,

defined by the formula
(3.20) Proj = Py [_L_I OT ] P,

such that the diagram

(3'21) cn ____4___> Ccm

Proj ,
Ags

Xk

is commutative. Here, Arg is the m x n matrix formed by setting all columns of A except ji,...,Jk
to zero. Furthermore, o} (Proj)/ox(Proj) < /1 + k(n — k). Similarly, equation (3.16) asserts the

existence of k rows, say with indices i;,...,i € {1,...,m}, that form a well-conditioned basis for
the entire row-space. Setting Y = span(e;,,...,e€; ) € C™, there exists an operator

(3.22) Eval : Y, - C™,

defined by

(3.23) Eval = B, [ -é— ' 0 ] B,

6



such that the diagram
A

(3.24) ct ———Cm
, Eval
s
Y,

is commutative. Here, A}y is the 1 x n matrix formed by setting all rows of A except 4y,...,4 to

zero. Furthermore, o)(Eval)/o).(Eval) < /1 + k(m — k). Finally, the geometric interpretation of
(3.1) is the combination of the diagrams (3.21) and (3.24),

(325) (Cn __1> Cm

1’roj l T Bval

X, — Y,
Ag
Here, Af is the 7n x n matrix formed by setting all entries of A, except those at the intersection of
the rows 7;,...,% with the cohumuns jj,. .., jx, to zero.
As a comparison, we consider the diagram

(3.26) Ccn A cm

R 1 Iuk

Cck ‘—D—k"'C"

obtained when the SVD is uscd to compress the matrix A € C™*", Here, Dy is the k x k diagonal
matrix formed by the k largest singular values of A, and Vi and Uy are column matrices containing
the corresponding right and lelt singular vectors, respectively. The factorization (3.25) has the
advantage over (3.26) that the mappings Proj and Eval leave k of the coordinates invariant. This
is gained at the price of non-orthonormality of these mappings.

4. NUMERICAL APPARATUS

In this section, we present a simple and reasonably efficient procedure for computing the factor-
ization (3.1). It has been extensively tested and consistently produces factorizations that satisfy
the bounds (3.17). While there oxist matrices for which this simple approach will not work well,
they appear to be exceedingly rare.

Given an m x n matrix A, the ficst step (out of four) is to apply the pivoted Gram-Schmidt
process to its columns. The process is halted when the column space has been exhausted to a
preset accuracy &, leaving a factorization
4.1) APy =Q [Rul Rlz] ,
where Pg € C**" is a permutation matrix, (¢ € C™*¥ has orthonormal columns, R;; € CH*k js
upper triangular, and Ry € CF*(n—k),

The second step is to find a matrix T € C¥*("~*) that solves the equation

(4.2) Ri1T = Rys
7




to within accuracy e. When Ry, is ill-conditioned, there is a large set of solutions; we pick one for

which ||T'|| is small.
Letting Acs € C™*k denote the matrix formed by the first k columns of APr, we now have a

factorization

(4.3) A= Acs [I|T) Pg.

The third and the fourth steps are entirely analogous to the first and the second, but are concerned
with finding k rows of Acs that form a basis for its row-space. They result in a factorization

I
(4.4) Acs=R [—3.—] As.
The desired factorization is now obtained by inserting (4.4) into (4.3):
I
(45) A=R [—g-] 4s [1]T] 2.

For this technique to be successful, it is crucially important that the Gram-Schmidt factorization
be performed accurately. Modified Gram-Schmidt or the method using Householder reflectors are
not accurate enough. Instead, we use a technique that is based on modified Gram-Schmidt, but
that at each step re-orthogonalizes the vector chosen to add to the basis before adding it. In exact
arithmetic, this step would be superfluous, but in the presence of round-off error it greatly increases
the quality of the factorization generated, see e.g. [6].

5. APPLICATION: AN ACCELERATED DIRECT SOLVER FOR INTEGRAL EQUATIONS

In this section we use the matrix compression technique presented in Section 3 to comstruct
an accelerated direct solver for boundary integral equations with non-oscillatory kernels. Upon
discretization, such equations lead to dense systems of linear equations, and iterative methods
combined with fast matrix-vector multiplication techniques are commonly used to obtain the so-
lution. Many such fast multiplication techniques take advantage of the fact that the off-diagonal
blocks of the discrete system typically have low rank. Employing the matrix compression techniques
presented in Section 3, we use this low-rank property to accelerate direct, rather than iterative,
solution techniques. The method uses no machinery beyond what is described in Section 3 and is
applicable to most integral equations involving non-oscillatory kernels.

For concreteness, we consider the equation

(5.1) u(z) + /r‘ K(z,y)u(y) dy = f(z), forz eI,

where I' is some contour and K(z,y) is a non-oscillatory kernel. The function u represents an

unknown “charge” distribution on I' that is to be determined from the given function f. The

method that we present works for almost any contour but for simplicity, we will assume that the

contour consists of p disjoint picces, I' = 'y +- - -+ I'p,, where all pieces have similar size (an example

is given in Fig. 3). In fact, to simplify the formulas, we will for the most part set p = 3.
Discretizing each contour I'; using n points, the equation (5.1) takes the form

MO | A2y | pr(13) u®) P
(5.2) M | p@2) | pr23) @ | =TI,
MED | G | MG ) e

8




(a) ©

FIGURE 1. Zeros are introduced into the matrix in three steps: (a) interaction
between I'; and the other contours is compressed, (b) interaction with I's is com-
pressed, (c) interaction with I's is compressed. The small black blocks are of size
k x k and consist of entries that have not been changed beyond permutations, grey
blocks refer to updated parts and white blocks are all zero entries.

where u) € C® and f() € C" are discrete representations of the unknown boundary charge
distribution and the right hand side associated with T';, and M) € C"*" is a dense matrix
representing the evaluation of a potential on I'; caused by a charge distribution on T';.

The interaction between I'; and the rest of the contour is governed by the matrices

vl = [ MED ] € C2nxn
MG '

For non-oscillatory kernels, these matrices are typically highly rank-deficient. We let k denote an
upper bound on their ranks (to within some preset level of accuracy €). By virtue of (3.16), we
know that there exist k rows of H(!) which form a well-conditioned basis for all the n rows. In
other words, there exists a well-conditioned n x n matrix L(!) (see Remark 6) such that

(53) H(l) = [M(l,z)l M(1,3)] € C‘nx2n’ and

()
(5.4) LOHEY = [ﬂgs_] +0(e),

where Hl(ils) is & k X 2n matrix formed by k of the rows of H(!) and Z is the (n — k) X 2n zero matrix.
There similarly exist an n x n matrix R(!) such that

(5.5) yORM o [Véé)l z*] +0(e),

where Véé) is a 2n x k matrix formed by k of the columns of V{1, For simplicity, we will henceforth
assume that the off-diagonal blocks have ezact rank at most &k and ignore the error terms.
The relations (5.4) and (5.5) imply that by restructuring equation (5.2) as follows,

LOMOGD R | LW pr(12) | L) pg(1:3) ] [ (RMW)~=14(D) ] [L(l)f(l) ]

(5.6) MEURD FYicE) M o) 7@
MEDRD MED M ) 7

we introduce large blocks of zeros in the matrix, as shown in Figure 1(a).
Next, we compress the interaction between I'y and the rest of the contour to obtain the matrix

structure shown in Fig. 1(b). Repeating the process with I'3, we obtain the final structure shown
9




FIGURE 2. In order to determine the R() and L(® that compress the interaction
between I'; (shown in bold) and the remaining contours, it is sufficient to consider
only the interactions between the contours drawn with a solid line in (b).

in Fig. 1(c). At this point, we have constructed matrices R® and L) and formed the new system

LOMOH RO | LMD REA) | ()3 RE) (RW)-14() JAORIO)

IOMEORD | TOMEIRD | TOMEIRD | | (BD) @ IO
IO MCEIRD [ LOMCIRD | LOMGIED | | (BD) @ IO 6

whose matrix is shown in Figure 1(c). We emphasize that the k x k non-zero parts of the off-
diagonal blocks are submatrices of the original n x n off-diagonal blocks. The parts of the matrix
that are shown as grey in the figure represent interactions that are internal to each contour. These
n — k degrees of freedom per contour can be eliminated by performing a local, O(n3), operation for
each contour. This leaves a dense system of 3 x 3 blocks, each of size k x k. Thus, we have reduced
the problem size by a factor of n/k.

Remark 5. For the algorithm presented above, the compression of the interaction between a fixed
contour and its p— 1 fellows is quite costly since it requires the construction and compression of the
large matrices H®) € C**(®~1)m and V() € CP—1)n*", In the numerical examples presented below,
this step is avoided by constructing matrices L(®) and R0 that satisfy (5.4) and (5.5) through an
entirely local procedure. We illustrate how this is done by considering the contours in Fig. 2(a)
and supposing that we want to find the transforms that compress the interaction of the contour T
(drawn with a bold line) with the remaining ones. This can be done by compressing the interaction
between T'; and an artificial contour I'yir that surrounds I'; (as shown in Fig. 2(b)) combined with
the parts of the other contours that penetrate it. This procedure works for any potential problem
for which the Green’s identities hold. The computational cost for one compression is O(kn?) rather
than the O(pkn?) cost for constructing and compressing the entire H®) and V).

To sum up: The accelerated solver consists of four steps. For a problem involving p contours,
each of which is discretized using n nodes and having off-diagonal blocks of rank at most k, they

are:

(1) The off-diagonal blocks are skeletonized and the diagonal n x n blocks are updated at a
cost of O(pkn?) using the technique described in Remark 5.
10




(2) The n — k degrees of freedom that represent internal interactions for each contour are
eliminated at a cost of O(pn3).

(3) The reduced kp x kp system is solved at a cost of O(k3p3).

(4) The solution of the original system is reconstructed from the solution of the reduced problem
through p local operations at a cost of O(pn?).

The third step is typically the most expensive one with an asymptotic cost of t(<°™P) ~ ck3p3, The
cost of a solution of the uncompressed equations is t(U"¢°™P) ~, ¢y p3 Consequently;

t(uncomp) (n) 3 .

¢(comp) ~ .];

Remark 6. The existence of the matrices L() and R(}) are direct consequences of (3.16) and
(3.15), respectively. Specifically, substituting H(!) for A in (3.16), we obtain

Speed-up =

(5.8) prED = [ - ] HY,

where Hgg (1) is the k x 2n matrix consisting of the top k rows of P'H ), The relation (5. 4) now
follows from (5.8) by defining

(5.9) LW = [—lﬁ-g—] P

We note that the largest and smallest singular values of L(1) satisfy
a(LO) < (1+1I8113) ",
on(LW) 2 (1+(1813) 7.

Thus cond(L(MY) < 1+ ||5]%, which is of moderate size according to Theorem 3. The matrix R
is similarly constructed by forming the column skeleton of V(1.

(5.10)

Remark 7. Equations (5.4) and (5.5) have simple heuristic interpretations: Equation (5.4) says
that it is possible to choose & points on the contour I'; in such a way that when a field generated by
charge distributions on the rest of the contour is known at those points, it is possible to extrapolate
the field at the remaining points on I'; from those values. Equation (5.5) says that it is possible to
choose k points on I'; in such a way that any field on the rest of the contour generated by charges
on I'1, can be replicated by placing charges only on those &k points.

Remark 8. It is sometimes advantageous to choose the same k points when constructing the
skeletons of H® and V(). This can be achieved by compressing the two matrices jointly, for
instance by forming the row skeleton of [H®|(V(®)*]. In this case L() = (R())*. When this is
done, the compression ratio deteriorates since the singular values of [H(®)|(V{#))*] decay slower
than those of either H® or V), as is seen by comparing Figures 4 and 5.

Remark 9. When the solution of equation (5.2) is sought for multiple right-hand sides, the cost
of the first solve is O(mnk). Subsequent solves can be preformed using O(p?k? + pn?) operations
rather than O(p?n?) for an uncompressed solver.

11
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20 %,

FIGURE 3. The contours used for the numerical calculations with p = 128. Picture
(a) shows the full contour and a box (which is not part of the contour) that indicates
the location of the close-up shown in (b).

Remark 10. The direct solver that we have presented has a computational complexity that scales
cubically with the problem size N and is thus not a “fast” algorithm. However, by applying the
techniques presented recursively, it is possible to reduce the asymptotic complexity to O(N?/2),
and possibly even O(N log N). This is a topic of current research.

6. NUMERICAL RESULTS

The algorithm described in Section 5 has been computationally tested on the second kind integral
equation obtained by discretizing an exterior Dirichlet boundary value problem using the double
layer kernel. The contours used consisted of a number of jagged circles arranged in a skewed square
as shown in Fig. 3. The number of contours p ranged from 8 to 128. For this problem, n = 200
points per contour were required to obtain a relative accuracy of € = 10~5. We found that to this
level of accuracy, no H® or V() had rank exceeding k = 50. As an example, we show in Fig. 4
the singular values of the matrices H () and V) representing interactions between the highlighted
contour in Fig. 2(a) and the remaining ones.

The algorithm described in Section 5 was implemented in FORTRAN and run on a 2.8GHz
Pentium IV desktop PC with 512Mb RAM. The CPU times for a range of different problem sizes
are presented in Table 1. The data presented supports the following claims for the compressed
solver: :

e For large problems, the CPU time speed-up approaches the estimated factor of (n/ k)3 = 64.
e The reduced memory requirement make large problems amenable to direct solution.

Remark 11. In the interest of simplicity, we forced the program to use the same compression ratio
k/n for each contour. In general, it detects the required interaction rank of each contour as its
interaction matrices are being compressed and uses different ranks for each contour.

12
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FIGURE 4. Plots of the singular values of (a) V® and (b) H® for a discretization
of the double layer kernel associated with the Laplace operator on the nine contours
depicted in Fig. 2(a). In the example shown, the contours were discretized using
n = 200 points, giving a relative discretization error of about 10~6. The plots show
that to that level of accuracy, the matrices V(¥ € C1600x200 anq H(#) g C200%1600
have numerical rank less than k = 50 (to accuracy 1076).

P (uncomp) || 4(comp) Ei(xcLiotmp) tgﬁ:p) Error

8 [ 5.6 2.0 (46) |1.6(4I) |0.05 [81-1077(1.4-107")
16 || 50 4.1(16.4) |3.1(15.5) (0.4 2.9-1075(2.8 - 10~7)
32 || 451 13.0 (72.1) | 6.4 (65.3) | 5.5 44-107%(4.4-1077)
64 || 3700 65 (270) |14 (220) |48 -

128 || 30000 || 480 (1400) | 31 (960) |440 |—

TABLE 1. CPU times in seconds for solving (5.2). p is the number of contours.
t(uncomp) j5 the CPU time required to solve the uncompressed equations; the numbers
in italics are estimated since these problems did not fit in RAM. t(<°™P) is the
CPU time to solve the equations using the compression method; this time is split

between £<™P), the time to compress the equations, and £5™P), the time to solve
the reduced system of equations. The error is the relative error incurred by the
compression measured in the maximum norm when the right hand side is a vector
of ones. Throughout the table, the numbers in parenthesis refer to numbers obtained

when the technique of Remark 5 is not used.

7. CONCLUSIONS

We have described a “compression” scheme for low-rank matrices. For a matrix A of dimen-
sionality m x n and rank k, the factorization can be applied to an arbitrary vector for the cost of
(n+m —k) - k operations, after a significant initial factorization cost; this is marginally faster than
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FIGURE 5. Plot of the singular values of X® = [H®| (V®)*] where H® and V)
are as in Figure 4. The numerical rank of X () is approximately 80, which is larger
than the individual ranks of H(®) and V.

the cost (n + m) - k produced by the SVD. The factorization cost is roughly the same as that for
the rank-revealing QR decomposition of A.

A more important advantage of the proposed decomposition is the fact that it expresses all of
the columns of A as linear combinations of k appropriately selected columns of A, and all of the
rows of A as linear combinations of k appropriately selected rows of A. Since each of the basis
vectors (both row and column) produced by the SVD (or any other classical factorizations) is a
linear combination of all rows (columns) of A4, the decomposition we propose is considerably easier
to manipulate; we illustrate this point by constructing an accelerated scheme for the direct solution
of integral equations of potential theory in the plane.

A related advantage of the proposed decomposition is the fact that one frequently encounters
collections of matrices such that the same selection of rows and columns can be used for each matrix
to span its row and column space (in other words, there exist fixed B, and Py such that each matrix
in the collection has a decomposition (3.1) with small matrices S and T'). Once one matrix in such
a collection has been factorized, the decomposition of the remaining ones is considerably simplified
since the skeleton of the first can be reused. If it should happen that the skeleton of the first matrix
that was decomposed is not a good choice for some other matrix, this is easily detected (since then
no small matrices S and T can be computed) and the global skeleton can be extended as necessary.

We have constructed several other numerical procedures using the approach described in this
paper. In particular, a code has been designed for the (reasonably) rapid solution of scattering prob-
lems in the plane based on the direct (as opposed to iterative) solution of the Lippman-Schwinger
equation; the scheme utilizes the same idea as that used in [4], and has the same asymptotic CPU
time estimate O(N3/2) for a square region discretized into N nodes. However, the CPU times ‘
obtained by us are a significant improvement on these reported in [4]; the paper reporting this
work is in preparation.

It also appears to be possible to utilize the techniques of this paper to construct an order

O(Nlog N) (or possibly even order order O(N) (!)) scheme for the solution of elliptic PDEs in
14




both two and three dimensions, provided that the associated Green’s function is not oscillatory.
This work is in progress, and if successful will be reported at a later date.
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Abstract

We describe an algorithm for the direct solution of systems of linear algebraic equations associated with the discret-
ization of boundary integral equations with non-oscillatory kernels in two dimensions. The algorithm is “fast” in the
sense that its asymptotic complexity is O(n log* n), where n is the number of nodes in the discretization, and x depends
on the kernel and the geometry of the contour (x = 1 or 2). Unlike previous fast techniques based on iterative solvers,
the present algorithm directly constructs a compressed factorization of the inverse of the matrix; thus it is suitable for
problems involving relatively ill-conditioned matrices, and is particularly efficient in situations involving multiple right
hand sides. The performance of the scheme is illustrated with several numerical examples.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

The boundary value problems of classical potential theory are ubiquitous in engineering and physics.
Most such problems can be reduced to boundary integral equations which are, from 2 mathematical point
of view, more tractable than the original differential equations. Although the mathematical benefits of such
reformulations were realized and exploited in the 19th century, until recently boundary integral equations
were rarely used as numerical tools, since most integral operators upon discretization turn into dense matri-
ces. In the 1980s, the cost of applying dense matrices resulting from potential theory to arbitrary vectors
was greatly reduced by the development of “fast” algorithms (Fast Multipole Methods, panel clustering,
wavelets, etc.). Combining fast matrix-vector multiplication techniques with iterative schemes for the solu-
tion of large-scale systems of linear algebraic equations, it became possible to solve well-conditioned
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boundary integral cquations of potential theory in O(n) operations, where n is the number of unknowns.
Today, such combinations are in many environments the fastest and most accurate numerical solution tech-
niques available. Iterative linear solvers have certain drawbacks though; we briefly discuss these below.

(1) The number of iterations required by an iterative solver is sensitive to the spectral properties of the
matrix of the system to be solved; for sufficiently ill-conditioned problems, the number of iterations
is proportional to n. Since each iteration (with FMM acceleration) requires O(n) operations, the total
operation count is then proportional to 2. While this is still better than the O(n*) estimate associated
with direct solvers, in many situations O(n?) is not acceptable. '

(2) When one needs to solve a collection of problems involving a single matrix and multiple right-hand
sides, the CPU time requirements of most iterative algorithms are close to the time required to solve
one problem multiplicd by the number of problems to be solved. With most direct solvers, the situation
is different; once the matrix has been inverted (or factored), applying its inverse to each additional
right-hand side is very incxpensive.

(3) When a collection of linear systems has to be solved whose matrices are in some sense “close” to each
other, iterative algorithms derive little (if any) advantage from the closeness of the matrices.

(4) Most direct schemes for the solution of linear systems are closely related to efficient algorithms for the
construction of their Singular Value Decompositions and certain other matrix factorizations (L-U,
Q-R, etc.). The simplest such scheme is probably the inverse power method with shifts (see, for exam-
ple, [6]), which converts any algorithm for the solution of a linear system into an algorithm for the
determination of a prescribed singular value. Iterative techniques do not provide such a capability,
except via the so-called Lanczos schemes, which tend to require a large number of iterations (see,
for example, [14]).

The subject of this paper is a numerical technique that is intended to overcome these shortcomings by
directly producing a compressed (*“data-sparse”) factorization of the inverse of the matrix. When applied
to contour integral equations of potential theory whose kernels are non-oscillatory, the asymptotic com-
plexity of the solver is typically O(n log" n), where x depends on the geometry and the kernel (k=1 or
2). When applied to problems involving oscillatory kernels, the asymptotic complexity deteriorates as
the wavenumber incrcases but the scheme remains viable for objects up to a few hundred wavelengths in
size. The factorization technique described in this paper is a multilevel extension of the compression tech-
nique described in [3]. The machinery underlying these techniques applies generally to matrices with rank-
deficient off-diagonal submatrices; contour integral equations have been chosen by the authors simply as
the most straightforward application.

It is not the purpose of this paper to provide an exhaustive survey of the literature on the subject we are
addressing. A number of researchers have observed that matrices with rank-deficient off-diagonal blocks
admit “fast” factorizations (sce [8,9]); others have constructed “fast” algorithms in various environments
(see [1,2,4,5,12]) where the operators in question posses rank-deficient off-diagonal blocks, without using
this property explicitly. However, we observe that the algorithm of this paper is closely related to the
scheme described in [13]. In fact, our algorithm could be viewed as a modification of the algorithm of
[13] that replaces “elongated” objects in two or three dimensions with “curves”, extends the class of kernels
addressed by [13], and introduces modifications in the scheme of [13] that are necessary for this extension to
work. ,

The paper is organized as follows: In Section 2 we introduce our notation and list certain facts about
compression of rank-deficient matrices. In Section 3 we demonstrate that the inverse of a matrix with
rank-deficient off-diagonal blocks possesses a data-sparse hierarchical factorization. In Section 4 we present
a generic numerical technique for constructing the factorization described in Section 3. In Section 5 we
show how the generic numerical technique presented in Section 4 can be improved further when applied
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to contour integral equations. In Section 6 we illustrate through numerical examples the efficiency of the
technique presented in Section 5 when applied to a number of different kernels and contours. In Section
7 we summarize our findings and discuss possible extensions and generalizations.

2. Preliminaries

2.1. Notation

Throughout the paper, we use upper case letters for matrices and lower case letters for vectors and sca-
lars. The canonical unit vectors in C" are denoted by e;. Given a matrix X € C™”, we let
X* denote its adjoint (the complex conjugate transpose),
oi(X) denote its kth singular value,
IXl,  denote its  operator norm,
Xz denote its Frobenius norm, and
x; € C™! denote its jth column.

Given matrices A, B, C and D we let
A A B
4B], , and )
2] [CJ i (2 )
denote larger matrices obtained by stringing the blocks 4, B, C and D together.

@.1)

Definition 1. (Permutation vectors) Given a positive integer n, we define

J, = the set of permutations of the integers {1,...,n}. (2.2)
Given two integers k and n such that 1 < k < n, we define

JF = the set of subsets of size kof elements of J,. (2.3)
In other words, if J € Jl:, then J is a vector of integers

J =ty dis (2.4)
where 1 <jj) < n and all j/s are different.
Definition 2. (Submatrix) When we use the term “submatrix” we do not insist that the submatrix must

form a contiguous block. To be precise, we say that B € C**/ is a submatrix of 4 € C™", if there exist
permutations I = [iy,...,i] € 3% and J = [j;,..., jj] € J, such that

by = ay,j,, forp=1,....k, g=1,...,1L (2.5)
Definition 3. (Neutered rows and columns) Let 4 be a matrix consisting of p x p blocks,

AW L 408)
A= - (2.6)
AP L. 4R
We refer to the submatrix formed by all blocks on the ith row except the diagonal one, i.e.
[A("'” c AED) gl ,A(ip)], 2.7

as the ith neutered row of blocks. A neutered column of blocks is defined analogously.
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2.2. Compression of matrices

In this section we state a thcorem on matrix compression that forms the foundation of the matrix fac-
torization technique presented later in this paper. Roughly speaking, the theorem asserts that given a ma-
trix A4 of rank k, it is possible to pick k of its columns in such a fashion that they form a well-conditioned
basis for the remaining columns. It was first reported in slightly different form in [7].

Theorem 1. Given an arbitrary matrix A € C™*" and an integer k such that 1 < k < min(m,n), there exists a
not necessarily unique) matrix T € C*0=%) and a permutation J = [j,, ..., J,} € I, such that
y unigq p 1 Jn

A4, =A,T +E. (2.8)
Here, Al and A, are matrices formed by the columns of A,
4 =laj,,...,q;] € cmk,
A =aj,,»--ra,) € ik,
the elements of the matrix T € C*"™0 satisfy
IT,| <1, for1<i<k, 1<j<n—k (2.10)
and the matrix E € C™"0 satisfies the inequality

IEl, < oxs1(4)V/1 + k(n — k), (2.11)

where o+ 1(A) is the (k + 1)th singular value of A.

2.9)

Remark 4. (Computational complexity) While Theorem 1 asserts the theoretical existence of a matrix T’
and a permutation J with certain properties, it does not address the question of how to determine these
numerically. In fact, the authors are not aware of any algorithm that finds these objects in polynomial time.
However, in [7] an algorithm is presented that finds a matrix T and a permutation J such that all statements
of Theorem 1 still hold, except that (2.10) and (2.11) are replaced by the weaker inequalities

| Ty1< vn, forl<i<k, 1<j<n—k (2.12)
and

IEll, < orar(A)y/T+ nk(n — K. (2.13)

When m > n, the computational complexity of this algorithm is typically O(mnk), the same as for the
pivoted QR-factorization. In rare cases, the computational complexity may be somewhat larger but it never
exceeds O(mn?).

Observation 5. (Column compression) When applied to a matrix 4 € C™” of rank k, Theorem 1 asserts
that there exists a well-conditioned column operation that leaves k of the columns of 4 unchanged while
mapping the remaining n — k columns to zero. More specifically, let us define

I -T
R=P;

. I]ec : (2.14)

where T and J are defined in Theorem 1 and the permutation matrix P, is defined by
P_] = [ejl,...,ejl] c Cm‘". (2.15)
Then
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AR = [Acs0] € €™, (2.16)
where the “column skeleton” Acs, is formed by k of the columns of 4;

Acs = [aj,,- .., a;) € C™5. (2.17)
Moreover, by virtue of (2.10) and the identity

1T
-1 —_ Pt, .

R [ 0 I} y (2.18)
it is clear that

IRl < /n+k(n—k), and [R'||z < v/n+k(n—k). (2.19)

Observation 6. (Row compression) The argument of Observation 5 can equally well be applied to the rows
of a matrix 4 € C™" of rank k. Thus, there exists a matrix L € R™" such that

Agrs

M=[o

]ecmﬂ (2.20)

where the “row skeleton” Ags € C**" is formed by k of the rows of 4 and

ILle < v/m+k(m—k) and [L7'|lp < V/m+k(m — k). (2.21)

3. Analytical apparatus

Consider a p X p block matrix

A0D o 40p)

A= : o (3.1
APD L 4P

such that any neutered row or column of blocks is rank-deficient. In this section we derive compressed fac-
torizations of the inverse of such a matrix. Lemmas 2 and 3 provide factorizations for the case p = 2. Obser-
vation 8 extends the results of Lemma 3 to a general p. Observation 9 introduces hierarchical factorizations
that further improve the efficiency. '

Lemma 2 below asserts that for a given 2 x 2 block matrix with rank-deficient off-diagonal blocks, there
exist well-conditioned row- and column-operations that (i) introduce zeros in the off-diagonal blocks and
(ii) leave the remaining elements in the off-diagonal blocks untouched.

Lemma 2. Let A be a non-singular matrix

A(”) A(u) (n+m)x(n+m)
‘= [A(ﬂ) qe | €T (32)

where A € C™", 4% € C™™ and the off-diagonal blocks A" € CcP ™ A@) € C™"  have rank
k < min(m,n). Then there exist matrices R,L € C"™" such that
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12
Xu Xni AQS’

[L 0] [A(u) (17)][13 o] (33
=Xy X 0 |- .
(21) (22) 21 22
0 I][4%0 A%]10 1 42 0 4@
(1)

Here, the matrix A ) e CF*™ consists of k of the rows of A% and the matrix A?s € C™* consists of k of the
columns of A®V. Moreover Xy eC* x, € R0 x, € RO xp € R “Kx(=k) " and the matrices R
and L satisfy (2.19) and (2.21), respectwely

Proof. Duc to Observations 5 and 6, there exist matrices R,L € C™” such that

(12)
M(12)=[Ags] and A<2‘>R=[A§S') o], (34)

where A2 and 4% are submatrices of 4! and A®Y, respectively. The identity (3.3) now follows by
partitioning

L
L= [Ll]’ where L, € C", L, € C"0x

2 (3.5
R=[R R;), where R, €C™, Ry € crxe-h),
and setting
X“ = LlA(u)R] € Ckxk’
X, = LAMR, € Ckx(n-—k),
- 2 (3.6)

Xy = LzA(n)Rl € C("-k)x",
X — LzA(n)Rz € C(n—k)x(n—k) O

The following lemma uses the results of Lemma 3 to reduce the problem of factonng the inverse of the
matrix 4 in (3.2) to the problem of factoring the inverse of the smaller matrix A in (3.8).

Lemma 3. Let A, X11, X12, Xo1, X22, Ay 12) andAm) be as in Lemma 2. Provided that the matrix X, in (3.3) is
non-singular, there exist matrices B € C""" Ce Ck *" and D € C"" such that

B 0] fC 0
A-'=[0 I]A'[O (,’]+[§ o]’ 3.7)
where
5 I:j(“) Aﬁsz)] e C+m)x (k+m) (3.8)
A(czsl) A
and
AM = Xy = X12X5 Xy € O, (3.9)

Proof. We let L;, Ly, R; and R, be defined by (3.5). Inverting both sides of Eq. (3.3), we obtain the identity
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-1
R R of|Xn Xe 4] [ O
A—lz[o 0’ ]] Xy X O L, 0j. (3.10)
A 0 4™ [0 T
Since X>; is non-singular,

12)q -}
Xn Xn Aks)

e O e i 42717
Xn X O = |-X3Xn 0 [ ! (1221) z zi)]
A 0 4® 0 I Acs 4
I =XpX; 0 0 00
xl:(; ‘; 2 ; J+ 0 X3 of. (3.11)
m 0 0 0

Now we obtain (3.7) by combining (3.10) and (3.11) and setting
B=R, — RoX5 Xy € C™,
C=L — X X5 L, e C, " (3.12)
D=RX5,LeC™. 0O

Remark 7. (Symmetric factorizations) It is possible to force the factorization (3.7) to be symmetric in the
sense that R = L* (which does not imply that C = B* unless A itself is Hermitian). To this end, we define L
and Jg as the matrix and index vector that compress the rows of the matrix [4124?)] € R™?" (rather
than the rows of 47 alone), and set R = L* and Jc = Jg. This modification typically results in a poorer
compression ratio but may dramatically improve the conditioning of the transformation matrices, as
discussed in Section 4.4.

Observation 8. (Onec-level compression of a block matrix) Consider a matrix

AW oo 4R
A= : | e, (3.13)
APY Lo 4l

where A9 € C™" forijj =1, ..., p. We assume that any neutered row or column of blocks has rank at most
k. Through p applications of Lemma 3, it is possible to reduce the problem of inverting A4 to the problem of
inverting the smaller matrix

(1) 7 (1p)

N |
A= : D | e O, (3.14)
- (o) . A'(PP)

where 4 € C** for ij=1,..., p, and Ay is a submatrix of A% whenever i #}.
More specifically, applying Lemma 3 to each of the p diagonal blocks of 4, we obtain the factorization
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B, 0 --- 0 c 0 -~ 0 D, 0 - 0
0 B ol _,|0 0 0 D 0
A_l = . . 4 . . + . . ) (315)
0 0 .-+ B, 0 0 - G 0 0 --- D,

where B; € C*,C; € C¥" and D; e C™", fori=1,...,p.
The single-level matrix compression is illustrated graphically in Fig. 1.

Observation 9. (Hicrarchical compression of a block matrix) Observation 8 reduces the problem of inver-
sion of a block matrix with rank-deficient neutered rows and columns to the problem of inversion of a
block matrix with smaller blocks. If by clustering these smaller blocks, we can create a matrix with off-diag-
onal rank-deficiencies, then the process can be repeated recursively to further improve the compression.

More specifically, let us change notation so that the objects labeled 4, A and k in Observation 8 are now
labeled AP, A" and k;,, respectively. Eq. (3.15) then reads

(4w)™ =B“>(,i"’)—lc“) +D, (3.16)

where BV, ¢®, D are block diagonal matrices whose 1p diagonal blocks are of sizes n x ky, ky Xn, nxn,
respectively. We then cluster the blocks of the matrix AD to form a matrix A® with (p/2) x (p/2) blocks of
size 2k; x 2k, and apply the factorization (3.16) to it, thus obtaining a telescoped factorization

( A“))"' =g [Bm (A*(Z))"Cm + D(:)] ¢ + pi, , (3.17)

Here, A?,B®,C®,D® are all block matrices with (p/2) X (p/2) blocks. Letting k, denote the rank of the
neutered rows and columns of 4®, the blocks of A~(2) have size k, X k», while B®, C?, DD are diagonal
block matrices with diagonal blocks of sizes 2k, x ky, ko x 2k; and 2k; x 2k, respectively. This process
can be continued until no further clustering is advantageous.

The multi-level matrix compression is illustrated graphically in Fig. 2.

Remark 10. (Adjoint of the inverse) Obviously, the factorizations (3.15) and (3.17) provide a mechanism
for the accelerated application of both 47! and [4™']*.

Remark 11. (Block sizes) In Obscrvations 8 and 9, it was assumed that all blocks within one of the matri-
ces 4,4, AV, A?, ... have the same size. This assumption was made for notational convenience only and
is in no way essential to the results.

HER 2 ——
HEN .. 1NN 1
Step 1 Step 2 Bl Step3 EHE
HEE  IEN B 6
BEE
Fig. 1. A 3x3 matrix [A“”],3 =1 is compressed in three steps, cf. Observation 8. In step j =1, 2, 3, the single-block compression of

Lemma 3 is applied to compress the interaction between A% and the rest of the matrix. Black blocks represents entries that have not
been changed beyond row and column permutations and gray represents entries that have been updated but are not (necessarily) zero.
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EEENEEEN
AENENEEEE
ENNEEEEN
EEENNENE
HEEEEEER
ENREEEEN
EEEEEENE
EEREEEEE

J Compress V4 J Compress Va J Compress

Cluster Cluster

Fig. 2. An 8 x 8 block matrix is compressed through a three-level compression scheme in the vein of Observation 9. The gray scale
coding is the same as in Fig. 1.

4. An algorithm for the computation of a compressed inverse

In Section 3 we demonstrate the existence of a compact factorization of the inverse of any block matrix
whose neutered rows and columns of blocks are rank-deficient. In this section, we describe a numerical
scheme for the construction of such factorizations, and estimate its efficiency.

Remark 12. The inversion scheme presented in this section is fairly generic, depending only on the ranks of
off-diagonal blocks of the matrix to be inverted. In situations where the structure of the matrix is known,
further improvements are possible. For instance, when applied to a dense 7 X n matrix resulting from the
discretization of a contour integral operator, the generic algorithm of this section requires O(n?) arithmetic
operations to construct its inverse, while the customized technique presented in Section 5 requires
O(n log? n) operations or less, depending on the integral operator.

4.1. Single block compression

Lemmas 2 and 3 assert that the inverse of a 2 x 2 block matrix of the form (3.2) can be factored in the
compressed form (3.7). The quantities Aq1), R, L, Agé) and A(Czsl) that appear in (3.7) can be determined by

taking the following steps:

(1) Determine a matrix L € C™” and a permutation Jg € J¥ such that

12
1412 — Agzs) :
0

where A;‘;’ is formed by the k rows of A'? specified by Jg, as described in Observation 6.
(2) Determine a matrix R € C™” and a permutation J¢ € J¢ such that

A®R = [ASS" 0,

where A(czsl) is formed by the columns of 4" specified by Jc, as described in Observation 5.
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(3) Partition R and L as specified in (3.5) and form the blocks Xj; as in (3.6).
(4) Compute Aq1), B, C and D using the formulas (3.9) and (3.12).

Steps (1) and (2) require O(mnk) floating point operations while steps (3) and (4) require O(n*) opera-
tions. The total cost is thus O(mnk + n).

4.2. Single-level compression

Let A4 denote a matrix consisting of p X p blocks, each of size n x n, in which every neutered row or col-
umn has rank k such that k < n. Observation 8 states that such a matrix can be factored in the sparse form
(3.15). This factorization contains the entities B;, C;, D; A},«ﬁ for ij=1,...,p, which can be computed
through p applications of the single-block compression technique of Section 4.1 — one application for each
diagonal block. Each one of the p steps requires O(pkn” + n°) floating point operations resulting in a total
computational cost of O(p%kn® + pn®).

Remark 13. The off-diagonal blocks of the compressed matrix 4 are never explicitly computed. Instead,
the block 4 € CF** s specified by giving the index vectors Jg),.]g) € J* that define the rows and
columns of A® € CK**, whose intersections form 4@, (Here Jg) is the index vector obtained when
compressing the ith row of blocks and Jg) is the index vector obtained when compressing the jth
column of blocks.)

4.3. Multi-level compression

The single-level technique compresses a block matrix 4 to form another block matrix 4 with smaller
blocks. Now, if by clustering blocks, we can create rank-deficiencies in the neutered rows and columns
of A, then the single-level technique can be applied recursively. The algorithmic implementation entirely
follows the description in Observation 9.

When estimating the computational cost for the multi-level technique we use r =1, ..., R as an index for
the levels (with r = 1 being the finest level), we let p, denote the number of blocks on level r, n, the average
block size and k, the average rank. The cost for step r is then

t, ~ k,ptn? + pn’. 4.1)

We assume that p,k, > n, so that the second term is dominated by the first. Using that p,k, = p, 411, +1,
we then find that the total cost for all R steps is

R R
TSt~ papman. (4.2)
r=1 r=|
At each level, the number of blocks is cut in half, so
p
b= zr——l-l' ‘ (43)
We let y, = n,+1/2n, denote the compression ratio so that
n,= (ZYr—l) Ut (2)'1)"1‘ (4_4)

Assuming that there exists a constant y such that y, < y, we obtain the bound

n < (29) 'y (4.5)
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Combining (4.2), (4.3) and (4.5), we find that the total cost is

R R
~S B P oy m (29 ~ ) Y (29 (4.6)
r=1

r=1 4 2r—-l
We assume that y < ¥4 = 0.7937 - - - so that the sum is bounded by (1 — 2y*)~!. Letting N denote the size of
the matrix we find that N = p;n; and thus

T ~ Nn,. 4.7)

The assumption that (4.5) holds for some y < 0.7939- - - is valid in many environments relating to discret-
ization of contour integral equations. We will return to this point in Section 6.

T

4.4. Conditioning

All factorizations computed in this section are variations of (3.15). For this formula to be of practical
use, the matrices B;, C; and D; must not be excessively large (in say the /* operator norm) and the condition
number of 4 has to be similar to that of 4. The formulas (3.12) imply that this is true if ||X3; ||, is of mod-
erate size (since (2.19) and (2.21) assert that R and L are well-conditioned). Under the assumptions of this
section (that the global matrix be non-singular and the off-diagonal blocks have low rank) it is not possible
to prove any such bound.

However, in the context of contour integral equations, the problem can largely be avoided by enforcing
that the compression be symmetric in the sense of Remark 7. The reason is that the diagonal blocks of the
original matrix tend to have the form

AW =D+ E, (4.8)
where D is a positive definite Hermitian matrix and E is “small” compared to D in operator norm. Since
R, = L; when symmetry is enforced, we find that, cf. (3.6),

Xz = Ly(D + E)L; = (L,D'?)(L,D'*)" + L,EL;. (4.9)

Here, the first term is well-conditioned, and the second has at most a few non-small singular values. Thus, it
is very unlikely that the sum of the two matrices should have any small singular values. Furthermore,
should such a coincidence happen, the algorithm detects it and avoids the problem by locally re-partition-
ing the matrix.

4.5. Error estimation

Given a prescribed accuracy e, the numerical scheme presented in this section solves the equation

Au=f (4.10)
by constructing an approximation A, that satisfies

l4-4., <¢ (4.11)
and is such that the approximate solution u, = 4;'f can be computed fast. The error in u satisfies

u—u = (A=A ) f = A7 A, - A [ =47 (4. — A)u. (4.12)
The relative error is therefore bounded as follows:

e il < gt (4, — ), < el @)

Jll
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While the algorithm cannot possibly control ||4;!||,, this quantity can be computed cheaply using power
iteration, see Remark 10. Thus, an assured bound for the relative error can be computed & posteriori.

5. An accelcrated algorithm applicable to contour integral equations

The bulk of the computational cost of the matrix compression technique presented in Section 4 consists
of the cost of determining index vectors and transformation matrices that compress the neutered rows and
columns. When the matrix under consideration is a discrete approximation of a contour integral operator,
it is possible to determine these quantities through an entirely local operation whose cost only depends on
the size of the diagonal block to be compressed (i.e., not on the size of the rest of the matrix). This is pos-
sible since the column and row opecrations employed in the present matrix compression technique do not
update the elements of the off-diagonal blocks, as discussed in Remark 13.

This section is structured as follows: In Section 5.1 we describe a single-block compression technique for
the boundary integral equations associated with Laplace’s equation in two dimensions that is faster than
the generic single-block technique of Section 4.1. In Section 5.2 we describe single and multi-level tech-
niques for contour integral equations obtained by repeated application of the single-block compression
technique of Section 5.1. Section 5.3 discusses generalizations of the technique to other equations of poten-
tial theory.

Remark 14. (Numerically rank-deficient matrices) In this section, we say that a matrix has rank k
provided that it has only k singular values that are larger than some preset accuracy. In other words, we do
not distinguish between what is sometimes called “numerical rank” and actual rank.

5.1. Single-block compression

The following observation summarizes the principle finding of this section:

Observation 15. Let the matrix 4 in (3.2) represent the discretization of the integral operator

[ Kputiist), forxer, (5.1)
r

where I' = I'; + I'; is a contour (Fig. 3 shows one example), the block structure of 4 corresponds to the
partitioning of I (so that, e.g., AU represents evaluation on I'y of the potential generated by a charge dis-
tribution on I';), and K is the kernel of a single and/or double layer potential for the Laplace operator. Then
under very mild assumptions on the contour TI', the factorization (3.3) can be computed using O(»®) floating
point operations, where n is the number of points used in the discretization of I'y.

i
1]
|
H I~e:xt
[}
1
\

Y
.

(a) (b)

Fig. 3. A contour I'. In figure (a), the partitioning I' = I'; + I'; is shown with I'y drawn with a bold line. In figure (b) the contour Iyis
drawn with a thin solid line and I'ex, with a dashed line.
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The idea behind the construction alluded to in Observation 15 is simple: Instead of compressing the
interaction between I'y and I', it is sufficient to compress the interaction between I'y and a small contour
I, formed by the union of an artificial circular contour enclosing I'y and the part of I'; that is inside this
circle (as shown in Fig. 3(b)). The rcason is that by virtue of Green’s theorem, any potential field generated
by charges on I'; can equally well be generated by charges on I";. Finally we note that if I'; is discretized
using ;; nodes, then typically I'; can be discretized using O(n) nodes, yielding a total cost for the procedure
of O(r°).

The remainder of this subsection is devoted to substantiating Observation 15. We start by introducing
some notation; let 'y denote the circle in Fig. 3(b) and let I'ex, denote the part of I' outside of I'cire. Fur-
thermore, let Sr,-.r, denote the integral operator that evaluates a potential on I'y caused by a charge dis-
tribution on I's. In other words, Sr,-.r, acts on a charge distribution u as follows:

[Sr,—ru](x) = /’ K(x,y)u(y)ds(y), forxel;. (5.2)

Observation 15 rests on the following claim:

Lemma 4. Let H € C™" denote the matrix discretizing Sr.,..r,, and let the index vector Jr € J% and the
transformation matrix L be such that they compress H in the sense of Observation 6. Then Jg and L also
compress the matrix B € C™™ that approximates the operator Sr,,—r,.

Sketch of proof. It is sufficient to prove that there exists a matrix # € C"™” with moderate I operator
norm such that

B=HW. (5.3)

(The matrix W is the matrix that maps a charge distribution on Iy, to an equivalent charge distribution on
Teire) Now, Eq. (5.3) is the discrete approximation of the operator relation

Srcxl"'rl = Srcirc"rl [(Srcirc"‘rcirc)-lsrcx!“’rdrc] * (5'4)

The matrix W in (5.3) corresponds to the operator in square brackets in (5.4). That this operator is bounded
is a consequence of Green’s theorem. [J

5.2. Single- and multi-level compression

The generic single- and multi-level compression techniques of Sections 4.2 and 4.3 were obtained by re-
peated application of the single-block technique described in Section 4.1. Single- and multi-level techniques
for contour integral equations are analogously obtained by repeated application of the single-block tech-

nique of Section 5.1.
It remains to estimate the computational cost of the accelerated compression technique. The cost for a

single level compression at level r =1, ..., R is now, cf. (4.1),

b~ Pr”g’ (5.5)
where p, denotes the number of clusters on level r and #, is the (average) cluster size. Under the assumptions
(4.3) and (4 5), we find that

t~ 21 (29) . (5.6)

2"
The total cost for all R steps is then
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R R
T~ <pm Y (4°)7 (5.7)
r=1 re=1

We assume that y < 4~13 = 0,630 - - so that the sum is bounded by (1 — 4’)~". Letting N denote the size of
the original matrix, we find that N =n;p; and thus

T ~ Nni. (5.8)

When the kernel of the equation is associated with the fundamental solution of Laplace’s equation, it is
possible to prove that the assumption (4.5) holds with y =~ 1/2 when n; > log N, which gives an upper
bound on the computational cost of O(N log® N). However, further acceleration is achieved by choosing
a smaller n;, even though the cluster size then grows slightly in the first couple of compressions. This ex-
plains why the log? N factor is not visible in the experiments in Section 6.

Remark 16. The single-block compression technique described in Observation 15 requires the algorithm to
determine which of the nodes of I, lie inside the artificial circle I'ic. If this search would be done by brute
force, the computational cost for a single level solve would include a term p2n?, cf. (5.5). Even though the
constant in front of this term is small, it would dominate the computation for large problems (in our
implementation, this would happen for N > 25000). One solution to this problem is to perform the search

via a hierarchical search tree; the estimate (5.5) then remains valid.

5.3. Generalizations

The technique presented in Section 5.1 for Laplace’s equation is readily applicable to other equations of
classical potential theory; Helmholtz, Yukawa, Shrodinger, Maxwell, Stokes, elasticity, etc. The only com-
plication occurs when working with equations that may have resonances. In such cases, it is possible that
the operator of self-interaction for the artificial circle (the operator Sr,.—rg, in (5.4)) has a non-trivial null-
space. This complication can be rectified by letting the artificial charges on Iy consist of both monopoles
and dipoles. Alternatively, it is possible to consider only one type of charges but placing them on two con-
centric circles instead of a single one.

When applied to oscillatory problems such as Helmholtz’ and Maxwell’s equations, the efficiency of the
technique deteriorates when the wave number increases since then the compression rate deteriorates as the
blocks grow larger (in other words, the assumption (4.5) no longer holds). In practice, it appears that the
method experiences very few problems for objects smaller than about 50 wavelengths. After that, the com-
putational complexity increases superlinearly with the problem size although the technique remains viable
for equations set on contours a few hundred wavelengths in size. This effect will be illustrated in the numer-
ical examples in Section 6.1.

Finally we remark that the scheme has O(n log” n) complexity when applied to integral equations defined
on one-dimensional curves in any dimension. The fact that we have so far only discussed equations embed-
ded in two spacc dimensions is simply that contour integral equations associated with boundary value prob-
lems in two dimensions is the most common source of such equations.

6. Numerical examples

In this section we present the results of a number of numerical experiments performed to assess the effi-
ciency of the numerical scheme presented in Sections 4 and 5. In every experiment, we compute a com-
pressed factorization of the inverse of the matrix resulting from Nystrém discretization of one of the
following three integral equations:
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:I:%u(x)+-21—n/r [n(y)'Vylog|x—y|]u(y)ds(y)=f(x), xel, (6.1)
[ g1 x =y lutast) = 16, xe T, (62)
F2iu(x) +/r [(n() -V, + k) Ho(k | x = y N]u(n)ds(y) = f(x), x€T, (6.3)

where n(y) is the outward pointing unit normal of I' at y and Hy(x) = Jo(x) + iYy(x) is the Hankel function
of zeroth order. Egs. (6.1) and (6.2) are the double and single layer equations associated with Laplace
Dirichlet problems, and (6.3) is an equation associated with the Helmholtz Dirichlet problem with wave
number k. In Egs. (6.1) and (6.3), the top sign in front of the first term refers to exterior problems and
the lower sign refers to interior problems.

The kernel in (6.1) is smooth and the equation was discretized using the trapezoidal rule (which is expo-
nentially convergent on a smooth contour). The Egs. (6.2) and (6.3) involve log-singular kernels that were
discretized using the modified trapezoidal quadrature rules of [10] of orders 6 and 10, respectively. The
algorithm was implemented in Fortran 77 and the experiments were run on a 2.8 GHz Pentium 4 desktop
with 512Mb of RAM memory. .

When presenting the numerical results, we use the following notation:

R the number of levels in the multi-level solver,
Ngare  the size of the discrete problem at the start,
Ngna  the size of the compressed problem,

tiot the total CPU time (in seconds),

towe the CPU time required to apply the factorized inverse (in seconds),
Ctop the condition number of the compressed matrix,
6min  the smallest singular value of the original matrix,

M the amount of memory used (in MB),
Eucrua  the relative error in u, Epcrun = flue — ullilu]),
E.s the relative residual error, Es = ||4u, — A/,

In each experiment, the right hand side f was the Dirichlet data corresponding to a potential field gen-
erated by a few randomly placed point charges. Since the exact potential field was known, we could com-
pare the potential field generated by the numerical solution to the exact one. We did this at J random points
on a circle enclosing I' and separated from I" by one quarter of its radius. Letting {s¥) };=1 denote the exact

potential and {v{)}7_, denote the potential generated by u,, we define the relative ”-norm error in the
potential as Epo = |fv - v/floll.

6.1. Example: a smooth contour

In this subsection we present results pertaining to the smooth contour shown in Fig. 4. The contour was
discretized using between 800 and 102 400 points and the integral equations associated with exterior Dirich-
let problems were solved. Tables 1-3 present the results for the kernels (6.1)~(6.3), respectively. As a refer-
ence, we give in Table 4 the timings for highly optimized implementations of the LU-factorization, direct
matrix-vector multiplication and FMM-accelerated matrix-vector multiplication.

For the two Laplace problems considered, we see that both the computational cost and the memory
requirement scale more or less linearly with the problem size, as expected. We recall that this expectation
was based on the postulate that for Laplace problems, the interaction rank between adjacent clusters de-
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Fig. 4. A smooth contour. The length of the contour is roughly 5.1 and its horizontal width is 2.
Table 1
Computational results for the double layer potential (6.1) associated with an exterior Laplace Dirichlet problem on the contour shown
in Fig. 4
Nytart Ntinar ot Lsotve E,cuunt Eres Epor Ctop Omin M
400 301 5.3¢-01 2.9¢—03 2.3e-10 4.7¢e—10 3.0e—06 4.3e+00 1.3e-02 4.2e+00
800 351 9.6¢—01 4.1e—03 2.5e-10 2.2e-10 6.3e~10 9.1e+00 1.2e-02 6.5e+00
1600 391 1.6e+00 6.3e—03 1.4¢-10 1.3e—10 1.6e—10 1.6e+01 1.2e—02 9.2¢+00
3200 391 1.8e+00 8.5¢-03 - 6.6e—11 3.7e-10 3.2e+01 1.2¢e-02 1.1e+01
6400 391 2.2¢+00 1.2e—-02 - 5.9e-11 8.9e—11 7.7e+01 1.2e~02 1.4e+01
12 800 390 2.6e+00 1.9e—02 - 3.6e-11 5.9e—11 1.4e+02 1.2e—02 2.1e+01
25 600 391 3.9e+00 3.4e-02 - 2.7e-11 4.7e—10 2.1e+02 - 3.5e+01
51200 393 6.5¢+00 6.5¢—02 - 2.5e—11 5.3e-11 2.0e+02 - 6.3e+01
102 400 402 1.3e+01 1.2e-01 - 2.0e—11 - 1.1e+03 - 1.2e+02
Table 2
Computational results for the single layer potential (6.2) associated with an exterior Laplace Dirichlet problem on the contour shown
in Fig. 4
N, start N final lot Lsolve Eyeraal Eres Epol Crop Omin M
400 253 4.1e-01 1.9¢e—03 4.6e-09 2.7¢—-09 1.6e—04 2.2e+01 3.5¢—02 3.1e+00
800 306 8.2¢-01 3.3¢—03 7.5e—09 9.9¢—09 2.4e-06 1.6e+02 2.9¢e—04 5.4e+00
1600 353 1.6e+00 6.2e—-03 4.9e—09 6.3e—09 1.6e—09 1.5e+02 1.4e—-04 8.6e+00
3200 369 2.3e+00 9.7e-03 - 2.5¢e—-07 1.2e-10 2.1e+02 4.2e—05 1.2e+01
6400 379 3.2¢+00 1.6e~02 - 1.3e—08 6.8e—12 2.6e+02 2.1e—-05 1.8e+01
12 800 395 4.8e+00 2.7e-02 - 1.7e—08 3.4e-12 2.8e+02 2.7e—06 2.9¢+01
25 600 409 7.7e+00 4.8e—02 - 3.6e—08 1.4e—-11 3.5e+02 2.7e~07 5.0e+01
51200 419 1.4e+01 9.0e—02 - 2.7e-07 - 3.7e+02 3.5e~07 9.1e+01
102 400 429 3.6¢+01 1.7e—01 - 1.6e—08 - 5.2e+02 - 1.7e+02
Table 3
Computational results for the kernel (6.3) associated with an exterior Helmholtz Dirichlet problem on the contour shown in Fig. 4
k Nsan Niipa hot Lsolve Eqcrua Epes Epo Ctop Omin M
21 800 435 1.5e+01 3.3e-02 2.7e—07 9.7¢—08 7.1e-07 4.1e+03 6.5e—01 1.3e+01
40 1600 550 3.0e+01 6.7¢—02 1.6e—-07 6.2e—08 4.0e—08 6.1e+03 8.0e—01 2.5e+01
79 3200 683 5.3e+01 1.2e-01 - 5.3e—08 3.8e—08 2.1e+04 3.4e—01 4.5e+01
158 6400 870 9.2e+01 2.0e-01 - 3.9e—-08 2.9¢—08 4.0e+04 3.4e—01 8.2e+01
316 12 800 1179 1.8e+02 3.9¢e-01 - 2.3e—08 2.0e—08 4.2¢+04 3.4e—01 1.6e+02
632 25 600 1753 4.3e+02 7.5e+00 - 1.7e—08 1.4e—08 9.0e+04 3.3e-01 3.5e+02
1264 51200 2864 (1.5e+03) (2.3e+02) - 9.5e—09 - - - 8.3e+02

The Helmholtz parameter was chosen to keep the number of discretization points per wavelength constant at roughly 45 points per
wavelength (resulting in a quadrature error about 107'2). The times in parenthesis refer to experiments that did not fit in RAM.



P.G. Martinsson, V. Rokhlin | Journal of Computational Physics xxx (2004) xxx—xxx 17

Table 4
Timings (in seconds) for highly optimized implementations of the LU-factorization, matrix-vector multiplication and FMM

accelerated matrix-vector multiplication

N 400 800 1600 3200 6400 12 800 25600 51200 102 400
iy 28¢-02  20c~01  1.6e+00  13e+01  (1.0e+02)  (8.3e+02)  (6.7e+03)  (5.3e+04)  (4.3¢+05)
Lot 7.5e-04  29¢—03  12e~02  48e-02  (1.9e~02)  (7.7e-01)  (3.1e+00)  (1.2¢+01)  (4.9¢+01)

tFMM 3.8e—-03 8.0c—03 1.6e—02 3.0e-02 6.0e-02 1.2e-01 2.4e—01 4.8e—01 9.6e—01

The FMM was run at a relative accuracy of 10~*° with the same kernel as in the Eq. (6.2). The numbers in parenthesis are extrapolated.

pend only very weakly (logarithmically) on their size. Fig. 5 illustrates this point; it shows that after two
rounds of compression, almost the only nodes that have survived are the ones near the border to the neigh-
boring clusters. The figure also illustrates that the algorithm detects the need to keep more nodes in the
interior of those clusters that run close to other clusters. (For an example of a situation where the Eq.
(6.1) needs to be discretized using a large number of nodes in spite of the fact that the contour is uncom-
plicated, see [11].) ' ,

Since the scheme presented in this paper relics on rank-considerations only, it works for oscillatory prob-
lems with low wave numbers but it eventually fails as the wavenumber is increased. Table 5 illustrates this
point by showing how the compression ratios deteriorate as the wavenumber k in Eq. (6.3) is increased from
1 to 1200. However, the authors were surprised to find that the method remains viable up to objects about
200 wavelengths across, as indicated in Table 3.

Remark 17. (Comparison with the fast multipole method) From Tables 1 and 4, we see that a single FMM
matrix-vector multiply is about 15-20 times faster than a matrix inversion. Thus, if an iterative solver
requires less than 15-20 iterations to solve Eq. (6.1), this would beat the direct method for a single solve.
However, once the inverse has been computed, it can be applied to additional right hand sides in about one
tenth of the time required for a single FMM accelerated matrix-vector multiply.

A VPN R VA e

Fig. 5. The points left after two rounds of compression of the contour shown in Fig. 4. The crosses mark the boundary points between
adjacent clusters.

Table 5

Deterioration of compression rates for large wavenumber Helmholtz problems

k 71 P2 73 Y4 ¥s Y6 7 Vs Neinal M
1 0.68 0.58 0.54 0.55 0.58 0.64 0.64 0.72 512 167

100 0.72 0.56 0.55 0.56 0.60 0.68 0.72 0.82 777 197

500 0.72 0.58 0.58 0.62 0.68 0.76 0.84 0.91 1522 303

The table shows the compression ratio y;, see (4.4), at each of the levelsj = 1, ... ., 8 for the Helmholtz kernel (6.3) on the smooth contour
in Fig. 4, discretized with N = 25 600 points. The three rows correspond to wave numbers k = 1, 100, 500. The second to last column
shows the number of degrees of freedom left on the finest level and the last column shows the total memory requirement (in MB).
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6.2. A rippled contour that almost self-intersects

In this subsection we present results pertaining to the rippled contour shown in Fig. 6. The contour was
discretized using between 800 and 102 400 points and integral equations associated with exterior Dirichlet
problems were solved. The number of ripples in the experiments increase with the number of discretization
nodes in such a fashion that there are roughly 80 nodes for each wavelength. Tables 6-8 present the results

for the kernels (6.1)-(6.3), respectively.

(a)

Fig. 6. (a) A rippled contour. (b) A close-up of the area marked by a dashed rectangle in (a). The horizontal axis of the contour has
length 1 and the number of ripples change between the different experiments to keep a constant ratio of 80 discretization nodes per

wavelength.

Table 6
Computational results for the double layer potential (6.1) associated with an exterior Laplace Dirichlet problem on the rippled contour

shown in Fig. 6

Nytart Ninat bot Isolve Eqerun Eres Epor Crop Omin M
400 171 2.3e~-01 1.0e-03 1.5e-10 1.1e-10 1.3e-07 7.4e+00 1.1e-01 1.5e+00
800 228 3.5¢—01 1.0e—02 1.9e-10 1.3e-10 3.8e—08 9.7e+00 7.6e—02 3.0e+00
1600 306 7.3e—01 5.8¢—03 1.3e—10 1.6e—10 5.5¢—08 1.6e+01 5.2e—02 6.2¢+00
3200 386 2.2e+00 8.5¢—03 - 1.4e-10 7.5e—08 3.1e+01 3.9e—02 1.2e+01
6400 460 4.4¢+00 1.7e-02 - 7.2e-11 8.2¢—08 7.0e+01 3.3e-02 2.1e+01
12 800 536 9.6e+00 3.5¢e-02 - 5.9e-11 3.7e—08 1.4e+02 2.9e—-02 4.0e+01
25 600 597 2.0e+01 7.6e—02 - 2.0e-11 1.4e—09 2.2e+02 - 7.6e+01
51200 641 4.0e+01 1.5¢—01 - 2.9e-11 - 6.2e+02 - 1.5e+02
102 400 688 (1.8e+01) 3.9¢-01 - 1.2e-11 - 7.8e+02 - 2.9¢+02

Table 7

Computational results for the single layer potential (6.2) associated with an exterior Laplace Dirichlet problem on the rippled contour
shown in Fig. 6

Nitart Nfinat Lot Lolve E ot E. Epot Ctop Omin M

400 176 2.4e-01 9.2e—-04 2.1e-09 1.7e—-09 2.4e—05 1.6e+02 5.5e—-04 1.6e+00
800 220 3.9e—01 3.8e-03 1.6e—-08 3.0e-08 8.0e—06 1.1e+03 1.0e—05 3.1e+00
1600 256 6.9¢e—01 5.3e-03 5.2e—09 7.0e—09 9.8e—08 2.8¢+02 1.6e—05 5.3e+00
3200 286 1.3e+00 7.6e—03 - 7.0e—09 1.6e—08 3.3e+02 1.2e-05 9.1e+00
6400 314 2.5e+00 1.4e—-02 - 1.5e~07 2.3e—09 7.5e+02 2.1e—06 1.6e+01
12 800 342 4.6e+00 2.8e—02 - 2.4e—08 1.5e—09 4.7e+02 1.7e-07 2.9e+01
25 600 362 8.8e+00 6.2e—02 - 2.3e—08 2.2e—-09 1.1e+03 9.7e—08 5.5e+01
51200 374 1.7e+01 1.2e--01 - 2.1e-08 - 1.8e+03 3.1e—08 1.1e+02

102 400 386 (8.1e+0) 2.3e-01 - 1.5e-07 - 3.1e+03 - 2.1e+02
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Table 8
Computational results for the kernel (6.3) associated with an exterior Helmholtz Dirichlet problem on the rippled contour shown in

Fig. 6

k Niant Niinat ot Lyolve Eactunt E Epot Crop Omin M
7 400 224 2.9¢+00 9.0e-03 1.4e—07 6.9¢—08 9.4e—07 1.2¢+04 7.9e—01 3.2e+00
15 800 320 7.7e+00 1.9¢—02 1.6e-07 7.4¢—08 1.2e—07 3.9e+03 7.9e~-01 8.2e+00
29 1600 470 2.1e+01 4.6e—02 - 6.7e-08 8.1e—08 7.4e+03 7.8e—01 2.0e+01
58 3200 704 6.1e+01 1.1e-01 - 5.2¢e-08 6.4¢—08 1.2e+04 8.0e-01 5.0e+01
115 6400 1122 1.4e+02 2.9e—01 - 4.8:—08 7.5e—08 1.4e+04 8.0e—01 1.3e+02
230 12 800 1900 (4.7e+02) (2.5e+01) - 5.5¢-08 7.5e~08 8.8e+04 8.0e—01 3.4e+02

- - - 9.8e+02

461 25600 3398 -~

The Helmholtz parameter k was chosen to keep the number of discretization points per wavelength constant at roughly 55 points per
wavelength (resulting in a quadrature error about 10~'%). The times in parenthesis refer to experiments that did not fit in RAM.

We see that the asymptotic complexity of the algorithm remains essentially the same as for the smooth
contour shown in Fig. 4. However, the constants involved are larger since more degrees of freedom are re-
quired to resolve the contour at the finest levels.

6.3. An interior problem close to a resonance

In this section we present results pertaining to interior Dirichlet problem on the contour shown in Fig. 7.
While interior and exterior Laplace Dirichlet problems are quite similar in nature, the corresponding Helm-
holtz Dirichlet problems are fundamentally different in that the interior problem possesses resonances while
the exterior does not. We will therefore focus exclusively on interior Helmholtz problems.

We present the results of two computational experiments, both relating to the Helmholtz kernel (6.3). In
the first experiment, we scan a range of wave numbers k between 99.9 and 100.1. For each wave number, we
computed the smallest singular value oy, of the integral operator using the iteration technique described in
Section 4.5. The resulting graph of omi, versus k, shown in Fig. 8, clearly indicates the location of each res-
onance in this interval. The second experiment consists of factoring the inverse of the matrix corresponding
to k = 100.0110276- - - for which 6, = 0.00001366- - -. The results, shown in Table 9, illustrate that the
method does not experience any difficulty in factoring the inverse of a reasonably ill-conditioned matrix.
In particular, the table shows that the factorization matrices B? ¥ and DY, see (3.17), are well-

conditioned.

Fig. 7. A contour the shape of a smooth pentagram. Its diameter is 2.5 and its length is roughly 8.3.
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Fig. 8. Plot of oy versus k for an interior Helmholtz problem on the contour shown in Fig. 7. The values shown were computed using
the iteration technique of Section 4.5 applied to a matrix of size N = 6400. Each point in the graph required about 60 s of CPU time.

Table 9
Details of the computation for the Helmholtz kernel (6.3) associated with an interior Dirichlet problem on the smooth pentagram

shown in Fig. 7 for the case N = 6400 and & = 100.011027569- - -

J » n ¥ 'j 1€l ee 187 1D

1 128 50.00 0.76 15.50 1.12e+00 1.12¢+00 4.20e-02
2 64 76.00 0.59 14.32 3.27e+01 3.27e+01 1.75e+00
3 32 89.72 0.60 8.94 1.63¢+01 1.62¢+01 9.28e—-01
4 16 107.00 0.64 6.27 9.09e+00 9.17e+00 2.41e+00
5 8 138.00 0.72 5.97 7.32e+00 7.31e+00 3.64¢+00
6 4 199.50 0.80 7.76 3.22e+00 3.23e+00 3.86e+00

For each level j, the table shows the number of clusters p; on that level, the average size of a cluster #;, the compression ratio y;, the time
required for the factorization ¢; and the size of the matrices B, €9 and DY (see (3.17)) in the maximum norm. For this computation,
Eros =2.8%107', Epoy =3.3% 107 and opmin = 1.4% 1075,

6.4. A contour resembling an area integral

The final numerical experiment that we present is included to demonstrate that the efficiency of the fac-
torization scheme deteriorates when it is applied to a curve for which the physical distance between two
random points on the contour is not well predicted by their physical separation. One example of such a
curve is the star-fish lattice illustrated in Fig. 9. Focusing on the double layer Laplace problem (6.1), we
apply the factorization scheme to a matrix of size N =25 600 and compare the performance to that for
the rippled dumb-bell shown in Fig. 6. Table 10 shows that the factorization of the matrix related to the
starfish lattice took almost five times as long and resulted in a compressed matrix of over twice the size.

To understand the difference in performance between the different contours, we need to consider how the
interaction rank of a cluster depends on its size. For the contours shown in Figs. 4, 6, and 7, we have seen
that the rank of the interaction between a cluster of size m and the rest of the contour is effectively bounded
by log m. However, for the contour shown in Fig. 9 the corresponding bound is /m. Figs. 5 and 10 illus-
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Fig. 9. The star-fish lattice contour; the physical distance between two random points on the contour is not well predicted by their
distance along the contour.

Table 10

Test results for two experiments concerning the matrix obtained by discretizing the double layer Laplace problem (6.1)

Contour: hot Nyart Niinat M
Rippled dumb-bell 37s 25 600 559 86Mb
Star-fish lattice 172s 25 600 1202 210Mb

The table illustrates the difference in performance of the algorithm when applied to, on the one hand, the contour shown in Fig. 6 (top
line), and on the other hand, the contour shown in Fig. 9 (lower line).

IENEEONEEN
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4 45 5 &5 6 35 4 45 5 55 6
(a) (b)

Fig. 10. Figure (a) shows a close-up of the star-fish lattice of Fig. 9. Figure (b) shows the nodes remaining after the interaction between
the cluster formed by the points inside the parallelogram and the remainder of the contour has been compressed, cf. Fig. 5.
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“trate the difference. Thus, the asymptotic complexity of the scheme when applied to a contour similar to the
star-fish lattice is O(#*?) rather than O(x log n).

7. Generalizations and conclusions

We have presented a numerical scheme that constructs a compressed factorization of the inverse of a
matrix. The scheme is applicable to generic matrices whose off-diagonal blocks have rank-deficiencies
but is most efficient when applied to matrices arising from the discretization of integral equations defined
on one-dimensional contours. (Although such integral equations frequently arise in the analysis of bound-
ary value problems in two dimensions, the dimension of the underlying space is of little relevance to the
algorithm.) For equations with non-oscillatory kernels the computational complexity of the algorithm is
O(n log" n) for most contours, where x =1 or 2, and # is the number of nodes in the discretization of
the contour.

Comparing our implementations of the direct factorization scheme on the one hand and the FMM ma-
trix-vector multiplication scheme on the other, we observed (i) that in a typical environment, the cost of
constructing a factorization of the inverse is 15-20 times larger than the cost of a single FMM matrix-vector
multiply, and (ii) that once the factorization of the inverse has been computed, the cost to apply it to a vec-
tor is 5-10 times smaller than the cost of a single FMM matrix-vector multiply. Thus, if an iterative solver
requires less than 20 steps to converge, the iterative solver outperforms the direct solver for a single solve.
However, if multiple right-hand sides are involved, the direct solver has a clear advantage. This observation
is the foundation for [11].

Since the scheme is based on rank considerations only, it cannot work for boundary integral equations
involving highly oscillatory kernels. However, since the interaction ranks are determined dynamically, the
oscillation must be quite significant before the scheme becomes impracticable. Empirically, it was found
that the scheme remains efficient for contours a couple of hundred wavelengths in size.

Another limitation of the scheme is that it does not achieve optimal efficiency when applied to a bound-
ary integral equation set on either a contour similar to the one shown in Fig. 9, or on a two-dimensional
surface. In either case, its computational complexity is O(n*2). Overcoming this limitation is a subject of
on-going research.

Finally, we mention that the matrix factorization scheme presented in this paper can be modified to con-
struct certain standard matrix factorizations (such as the singular value decomposition). This modification
will be reported at a later date.
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Abstract

A stable second kind integral equation formulation has been developed for the Dirichlet problem for the Laplace
equation in two dimensions, with the boundary conditions specified on a collection of open curves. The performance of
the obtained apparatus is illustrated with several numerical examples.
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1. Introduction

Integral equations have been one of principal tools for the numerical solution of scattering problems for
more than 30 years, both in the Helmholtz and Maxwell environments. Historically, most of the equations
used have been of the first kind, since numerical instabilities associated with such equations have not been
critically important for the relatively small-scale problems that could be handled at the time.

The combination of improved hardware with the recent progress in the design of “fast” algorithms has
changed the situation dramatically. Condition numbers of systems of linear algebraic equations resulting
from the discretization of integral equations of potential theory have become critical, and the simplest way
to limit such condition numbers is by starting with second kind integral equations. Hence, interest has
increased in reducing scattering problems to systems of second kind integral equations on the boundaries of
the scatterers.

During the last several years, satisfactory integral equation formulations have been constructed in both
acoustic (Helmholtz equation) and electromagnetic (Maxwell’s equations) environments, whenever all of
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the scattering surfaces are “closed” (i.e., scatterers have well-defined interiors, and have no infinitely thin
parts). Boundary valuc problems for the biharmonic equation with boundary data specified on a collection
of open curves have been investigated in some detail in [9-11]. However, a stable second kind integral
equation formulation for scattering problems involving “open” surfaces does not appear to be present in
the literature.

In this paper, we describe a stable second kind integral equation formulation for the Dirichlet problem
for the Laplace equation in R?, with the boundary conditions specified on an “open” curve. We start with a
detailed investigation of the case when the curve in question is the interval [—1, 1] on the real axis; then we
generalize the obtained results for the case of (reasonably) general open curves.

The layout of the paper is as follows. In Section 2, the necessary mathematical and numerical prelim-
inaries are introduced. Section 3 contains the exact statement of the problem. Section 4 contains an in-
formal description of the procedure. In Sections 5 and 6, we investigate the cases of the straight line segment
and of the general sufficiently smooth curve, respectively. In Section 7, we describe a simple numerical
implementation of the scheme described in Section 6. The performance of the algorithm is illustrated in
Section 8 with several numerical examples. Finally, in Section 9 we discuss several generalizations of the
approach.

2. Analytical preliminaries

In this section, we summarize several results from classical and numerical analysis to be used in the
remainder of the paper. Detailed references are given in the text.

2.1. Notation

Suppose that a, b are two real numbers with @ < b, and f,g : [a,b] — C is a pair of smooth functions,
and that on the interval [a, ], the function g has a single simple root s. Throughout this paper, we will be
repeatedly encountering expressions of the form

. :—e& b&
%(agw“+mwf& M

normally referred to as principal value integrals. In a mild abuse of notation, we will refer to expressions of
the form (1) simply as integrals. We will also be fairly cavalier about the spaces on which operators of the
type (1) operate; whenever the properties (smoothness, boundedness, etc.) required from a function are
obvious from the context, their exact specifications are omitted.

2.2. Chebyshev polynomials and Chebyshev approximation

Chebyshev polynomials are frequently encountered in numerical analysis. As is well known, Chebyshev
polynomials of the first kind T, : [-1,1] — R(n > 0) are defined by the formula

T,(x) = cos(n arccos(x)) )
and are orthogonal with respect to the inner product

1
(1.9)= [ S6) 8 s o ®)
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The Chebyshev nodes x; of degree N are the zeros of Ty defined by the formula

@i+ l)n
X; = COS T i=01,...,N-1 4)
Chebyshev polynomials of the second kind U, : [-1,1] — R(n > 0) are defined by the formula
__ sin((n + 1) arccos(x))
Unx) = sin(arccos(x)) ()

and are orthogonal with respect to the inner product
1
(9)= [ 16)-2s)- V=P ©)
The Chebyshev nodes of the second kind #; of degree N are the zeros of Uy defined by the formula

tj=cos(A1;:_j1)n, j=01,...,N-1 @)
For a sufficiently smooth function f : [-1,1] — R, its Chebyshev expansion is defined by the formula
16)= 3Gt ®
with the coefficients C; given by the formulae
Co= -}; / if(x) To(x) - (1 - %) dx, )
and
Ck=2/lf(x)‘Tk(x)~(1-xz)_mdx, (10)

for all k > 1. We will also denote by P”’ the order N — 1 Chebyshev approximation to the function f on the
interval [-1, 1] i.e., the (unique) polynonua] of order N—1 such that PY(x,)=f(n) for all
i=0,1,. — 1, with x; the Chebyshev nodes defined by (4).

The followmg lemma provides an error estimate for the Chebyshev approximation (see, for example [5]).

Lemma 1. If f € CX[-1,1] (i.e., f has k continuous derivatives on the interval [—1,1]), then for any
xe[-11],

lp” ()] = (i) a1

In particular, if f is infinitely differentiable, then the Chebyshev approximation converges superalgebraically
(i.e., faster than any finite power of 1/N as N — o0).

2.3. The finite Hilbert transform

We will define the finite Hilbert transform H by the formula
1
~ t
Ao = [ 20 4, (12)

-1 t—x
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We then define the operator X : C2[—1,1] — L?(—00, c0) by the formula

= , 0 0] 2¢(X))
K = lim / ——dt+ dr - , 13
((P)(x) "1_'0 ( -1 (t "X)~ x+e (t —x)z € ( )
and observe that the limit (13) is often referred to as the finite part integral
1
(1)
f.p. / dt 14
P -1 (t—x) (14)

(see, for example Hadamard [8]).
The following theorem can be found in [13]; it provides sufficient conditions for the existence of the finite

part integral (14), and establishes a connection between the finite Hilbert transform (12) and the finite part
integral.

Theorem 2. For any ¢ € C*[-1,1], the limit (13) is a square-integrable function of x. Furthermore,
K(p)=DoH(p), (15)
with D = £ the differentiation operator.

The following theorem (see, for example [21]) describes the inverse of the operator H, to the extent that
such an inverse exists

Theorem 3. The null space of the operator H is spanned by the function 1/v/1 — x2. Furthermore, for any
function f € IP[—1,1] with p > 1, all solutions of the equation

H(p)=f (16)
are given by the formula

o) =~ T o B o T()(x) + s (7)

= i—=

with C an arbitrary constant, and the operator T : LP[-1,1] — l}’[—-l', 1) defined by the formula

T(f)(x) = VI-2- f(3). (18)

Applying Theorem 3 twice, we immediately obtain the following corollary:

Corollary 4. For any f € C'[-1,1), all solutions of the equation

HoH(p)=Ho)=f (19)
are given by the formula ‘

o) = 2T 0 BP0 T()(0) + st o log (20)

with Cy, Cy two arbitrary constants.
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2.4. Several elementary identities

In this section, we collect several identities from classical analysis to be used in the remainder of the paper.
Lemma 5 states a well-known fact about the two-dimensional Poisson kernel y/(x? + »?); it can be found in
(for example) [19]. Lemma 6 provides explicit expressions for the finite Hilbert transform operating on
Chebyshev polynomials, where (22) is a direct consequence of Lemma 3, and (23), (24) can be found in [2].
Lemma 7 lists several standard definite integrals; all can be found (in a somewhat different form) in [6]. Fi-
nally, Lemma 8 follows from the definition of curvature c(¢) found in elementary differential geometry (cf. [3]).

Lemma 5. Suppose that ¢ € IP[-1,1] (p 2 1). Then

! Iyl . — ol
e /.. oy (Wd=cl)

for almost all x € [~1,1].

Lemma 6. For any x € (—1,1),

| 1
—_——e———dt =0,
/-1 t—x 1-1
and

' VI

-1 =X

Uy (f)dt = —m - T,(x),

1 1 1
/_, ;_:_;.m.]‘,,(t)dt_n-U-l(x),

foranynz=1.

Lemma 7.

1. Forany x,t€(-1,1) andx # 1,
/’ 1 _log{=—logit
S s=x)(s-0 x—t

2. For any (x,y) € R*\ [-1,1] and t € (-1,1),

/, (s —x) o by - (arctan (‘—;f) + arctan (‘ly—tl"))
(=X + -1 (=8 +5?)

2 2
(x—1)- (log('(l"lt)*;’;—log“::zl;”z)

" 2 — 17 +7)

3. For any x € (—1,1),

1
1
loglx — t| » ———=dt = —7 - log 2
/_l oglx —1| = n-log2,

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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[: log|x—t|-\/.1.tt_t§dt=-—n-x, (28)
/l L log(1 + ) dr = L0 (29)
at—x J1-¢ Vi-x '’
! 1 _ n-(arccos(x) — m)
[J??\ﬁtﬁ‘%“‘”““ i (30)
log( +t)dt = n - (arccos(x) - V1 —x2 + log(2) - x — 1), (31)
log(l —1)dt = - ((arccos(x) — ) - V1 —x2 +log(2) - x + 1). (32)

Lemma 8. Suppose that y : [0,L] — R? is a sufficiently smooth curve parametrized by its arc length with the
unit normal and the unit tangent vectors at y(t) denoted by N(t) and T (t), respectively. Suppose further that the
function u : R? — R is twice continuously differentiable. Then at the point y(t), the Laplacian of u is given by
the formula
& ou | u
A=N-VVu:-N—c(t)N -Vu+— = —ce(t) == +—=,
0 u0(0) = mm) O ¥ 577

where the curvature c(t) at y(2) is defined by d*y/d? = c(t)N(2).

(33)

2.5. The Poincaré—Bertrand formula

For a fixed point x € (-1, 1), we will consider two repeated integrals

1= [ ([ #e)a B
/(pz ) (/ (t—(.fc;:)—-t )ds’ , (35)

differing from each other only in the order of integration. Both integrals exist almost everywhere for a fairly
broad class of functions. However, they are not, in general, equal to one another. The following lemma
establishes the connection between them (see, for example [17,21]; the result is usually referred to as the
Poincaré-Bertrand formula.

Lemma 9. Suppose that ¢, € IP[-1,1], ¢, € L7[-1,1]. Then if

%+%<L ~ (36)

then
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e R R RV = = DL

Jor almost all x € (—1,1).
2.6. Potential theory

In this scction, we introduce some terminology standard in potential theory and state several technical
lemmas to be used subsequently. We will define the potential G,, : R? \ {x,} — R of a unit charge located at
the point x, € R? by the formula

G, (x) = log(||x — xol)). (38)

Suppose that y : [0, L] — R? is a sufficiently smooth curve parametrized by its arc length, and that y is an
open curve (i.., y(0) # y(L)). The image of y will be denoted by I', and the unit normal and the unit tangent
vectors to y at the point y(¢) will be denoted by N(z) and T(¢), respectively. Given an integrable function
o :[0,L] — R, we will refer to the functions S,, : R* — Rand D, , 0, : R?\ I' — R, defined by the formulae

§,0(x) =/0 Gyy(x) - o(8)dt, (39)
Dyo(x) = %{%2 -o(t)ds, (40)

LOGyy(x) |
ON(2)?
as the single, double, and quadruple layer potentials, respectively.

The functions (3G, (x))/(8N(2)), (682G, (x))/ (BN (£)?) : B? \ y(t) — R are often referred to as the dipole
and quadrupole potentials, respectively. Obviously,

0() = | o)d, (41)

0Gu)  (N().x = (1)
NG T =yl “2)
G, _ AN x— v . 1
o) PR “3)

In particular, if y is a straight line segment I, = [0, L] on the real axis, then

aG,(H,)(I(s) —h- N(S)) _ h

N(s+1) “wie (44)
FGral(s) = -N(s)) £ |

ON(s+1)° (24 2y (45)

The following two lemmas can be found in [14]. Lemma 10 states a standard fact from elementary
differential geometry of curves; Lemma 11 describes the local behavior on a curve of the potential of a
quadrupole located on that curve and oriented normally to it.
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Lemma 10. Supposc that y : [0,L] — R? is a sufficiently smooth curve parametrized by its arc length with the
unit normal and the unit tangent vectors at y(t) denoted by N(t) and T(t), respectively. Then, there exist a
positive real number B (dependent on y), and two continuously differentiable functions f,g: (-8,8) — R
(dependent on v), such that for any t € [0, L],

s+~ 10 = (-2 4 19) 70+ (G54 0-0) -0, (46)

for all s € (—B, B), where c(t) in (46) is the curvature of y at the point y(t).

Lemma 11. Suppose that y : [0,L] — R? is a sufficiently smooth curve parametrized by its arc length. Then,
there exist real positive numbers A, B, hy such that for any s € [0, L],

Gy () = h-N(s))  ~-HK  c-h-£ (5K +7)

<4, 47
ON(s + 1)’ (12 +22) » + )’ 47

for all t € (=B, B), 0< h < ho, where the coefficient c in (47) is the positive curvature of y at the point y(s).

Similarly, the following lemma describes the local behavior on a curve of the potential of a dipole located
on that curve and oriented normally to it; it also describes the local behavior on a curve of the tangential
derivative of the potential of a charge located on that curve. Its proof is virtually identical to that of Lemma
11.

Lemma 12. Under the conditions of Lemma 11, there exist real positive numbers A, B, hy such that for any
s e [o,L],

aGy(sH) (')’(S) —h- N(S)) h
‘ ON(s+1) et (48)
aGy(sH)(Y(s) —h- N(S)) t
‘ T 1) wie|S4 (49)

SJorallt€ (—B,B), 0<h < hy.
We will define the function M, , : R*\ I' — R by the formula

Moo) = Q) = Dyels) = [ (aai:gj)(i‘) - - e, (50)

for all x € R?*\ I' and observe that M,, is the difference of a quadruple layer potential and a weighted
double layer potential with the weight equal to the curvature c¢(f). The following theorem is a direct
consequence of Lemmas 11 and 12; it states that under certain conditions the function M, , defined by (50)
can be continuously extended to the whole plane R?.

Theorem 13. Suppose that y : [0,L] — R? is a sufficiently smooth open curve parametrized by its arc length,
and that o : [0,L] — R is a function continuous on [0, L], whose second derivative is continuous on (0,L). Then
the function M, , can be continuously extended to R* \ {y(0),y(L)} with the limiting value on y(0, L) defined by
the formula
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L8 Gy (v(x)) b 8G(r(x)
M,,,,('y(x)) == fp’/o. W . 0'([) dr — /0 C(l) . W . O'(t) dt (51)
for all x € (0,L). Furthermore, if o satisfies the additional condition that
lo(x)| < C-(x- (L= x), (52)

with some C > 0, a > 1 for all x € [0,L), then M, , can be further continuously extended to R* with the limiting
values on y(0), y(L) given by the improper integrals

L 2
M0 = [ ( R R (53)
L 2
Mt = | ( R R Rl (54
respectively.

Definition 14. We will denote by E the linear subspace of C[0,L], consisting of functions ¢ satisfying the
following two conditions:

1. ¢ is twice continuously differentiable on (0,L);

2. o satisfies the condition (52).

We then define the integral operator.M, : E — C[0,L] via the formula
M,(0)(x) = My +(¥(x))- ' \ (55)
The following lemma states that the operator M, on a sufficiently smooth open curve y is a compact
perturbation of the same operator M;, on the line segment I, = [0, L].

Lemma 15. Suppose that y : [0,L] — R? is a sufficiently smooth open curve parametrized by its arc length.
Suppose further that the operator R, : C[0,L] — CI[0,L] is defined by the formula

L
Ry(0)(x) = /0 r(x,t) - o(t)de (56)
with the function r : [0, L] x [0,L] — R defined by the formula
_OGuOe) o\ 8Gn(r(x) OGyp(x)
rint) = N (1) o0 —on ® oN(z)? (57)

for all x # t, and by the formula

2
rt,f) = 5(1—2— (58)
for all x = t, with c(t) denoting the curvature of y at the point y(t). Then
o) = 2V@,90) — v’ 1 N@) -y) 1 "
“ = @m0l e —oF ) e —0r  E- o )

for all x # t. Furthermore, r is continuous on [0, L] x [0, L], so that the operator R, is compact. Finally, if o € E
(see Definition 14 above), then
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My(0)(x) = My, (0)(x) + Ry (0)(x). (60)

Proof. Eq. (60) follows directly from the combination of (51), (56), (57) and the fact that the curvature is
zero everywhere on the line segment J;. (59) is a direct consequence of (42), (43), (45), (57). In order to prove
that » is continuous on [0,L] x [0,L], we start with observing that since y € C*[0,L], it is sufficient to

demonstrate that
hmr( +s5,8) = t) (61)

Replacing x in (59) with ¢+ s, we obtain

2N (1), y(t + 5) — 9(8))° 1 . M@ ts) @) 1 ]
lIy(t + ) = y()|* +MO+@—NOW+ “ Iyt +s) =y s (62

Substituting (46) into (62), we have

rit+s,t) =—

2p(s)’ pls) 1 —ds)
-‘—1"(";)—2'+c(t)'d—(‘;5+s2'd(s) ) (63)

where the functions p,d : (—B, f) — R are given be the formulae

plo) =245 506), (64)

w0 =(1- 4240 19) + (L2 040) (69)

with B a positive real number, and the functions f, g provided by Lemma 10. Since f, g are continuously
differentiable on (—p, B) (see Lemma 10), we have

r(t+s’t) ==

i 565 =7 <66>
1-d(s) _e(®) 67)

=0 s2-d(s) 127
Now, we obtain (61) by substituting (66), (67) into (63). [

Remark 16. A somewhat involved analysis shows that for any k > 1 and y € C¥*2[0, L}, the function r (see
(57) above) is k times continuously differentiable. The proof of this fact is technical, and the fact itself is
peripheral to the purpose of this paper; thus, the proof is omitted.

3. The exact statement of the problem

Suppose that y is a sufficiently smooth open curve, and that the image of y is denoted by I'. We will denote
by S, the set of continuous functions on R? with continuous second derivatives in the complement of T}, i.e.,

S, = C}(R*\T') N C(R?). (68)
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We will consider the Dirichlet problem for the Laplace equation in R?, with the boundary conditions
specified on :
Given a function f : I' — R, find a bounded solution u € S, to the Laplace equation

Au=0 inR*\T (69)
satisfying the Dirichlet boundary condition
u= f onl. (70)

The following theorem can be found in [15].
Theorem 17. If f € C(T'), then there exists a unique bounded solution in S, to the problem (69) and (70).

Remark 18. Certain physical problems lead to modifications of the problem (69) and (70). For example, the
boundedness of the solution at infinity might be replaced with logarithmic growth, the boundary might
consist of several disjoint components, etc. Extensions of Theorem 17 to these cases are straightforward,
and can be found, for example, in [17].

4. Analytical apparatus I: informal description

In this section, we will present an informal description of the procedure. We assume that y : [1,1] — R?
is a sufficiently smooth “open” (i.e., y(—1) # y(1)) curve with the parametrization

10 =3(3-¢+), (m)

where L is the total arc length of the curve, and 7 : [0,L] — R? is the same curve parametrized by its arc
length. The image of y will be denoted by I'. We start with observing that the solution u of the Dirichlet
problem (69) and (70) must satisfy the following four conditions:

() u is harmonic in R*\ T;

(b) u is bounded at infinity;

(c) u is continuous across I';

(d) u is equal to the prescribed data f on I

Our goal is to construct a second kind integral formulation for the Dirichlet problem (69) and (70).
Standard approaches in classical potential theory call for representing u in R?\ T via single or double
layer potentials so that conditions (a), (b) are automatically satisfied, and conditions (c), (d) lead to a
boundary integral equation via the so-called jump relations of single and double layer potentials (see, for
example [16]). However, in the case of an open curve, if u is represented via a double layer potential, the
condition (c) cannot be satisfied since any non-zero double layer potential has a jump across the
boundary; and if u is represented via a single layer potential, while the single layer potential can be
continuously extended across the boundary, the condition (d) will lead to an integral equation of the first
kind. Hence, classical tools of potential theory turn out to be insufficient for dealing with open surface
problems.

It is shown in [14] that the quadruple layer potential has a jump across the boundary which is pro-
portional to the curvature of the curve. Combining this observation with the well-known fact that the
double layer potential has a jump across the boundary which is independent of the curvature, we observe
that the sum of a quadruple layer potential and a weighted double layer potential with the weight equal to
the curvature given by the formula
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"EGnx) . 3G
/_ | ( S =) 6N(t)> o(t)dr (72)

can be continuously extended across the boundary. However, if u is represented via (72), then the condition
(d) will lead to a hypersingular integral equation. It is also shown in [14] that the product of the hyper-
singular integral operator with the single layer potential operator is a second kind integral operator in the
case of a closed boundary. Thus, one is naturally lead to consider the operator P, defined by the formula

' EGy () 8Gy(x) 1
Po)(x) = /_1 (—W—c(t) W) . (/_1 log|t —s|- a(s)ds) dr. | (73)
Obviously, P,(o) is not dcfined when x € I', and we will define the operator B, by the formula
B,(0)(t) = lim P(0)(x). (74)
In the special case when y is the interval = [~1, 1] on the real axis, (73) assumes the form
1 1 o2 ) 1
Ao x) =3 [ S tonttx =7 +2)- ([ togls = - sl ) as, 13)
2.9 -1
and the operator B, is defined by the formula
Bi(0)(x) = lim Pi(0) (x.). (76)

The operator B; turns out to have a remarkably simple analytical structure (see Section 5.4 below); its
natural domain consists of functions of the form

s 0le) + g ToB W), )

with @, smooth functions, and when restricted to functions of the form (77), it has a null-space of di-

mension 2, spanned by the functions

1
e 78)
1 14x (79)

7 _xz-log1 —

In Section 5.4, we construct a generalized (in the appropriate sense) inverse of By; in a mild abuse of

notation, we will refer to it as By !.
Now, if we represent the solution of the Problem (69) and (70) in the form

u(x) = P(0)(x), (80)
then the conditions (c) and (d) will lead to the equation
By(o)() =S (1), (81)

with ¢ the unknown density. It turns out that (81) behaves almost like an integral equation of the second
kind; the only problem is that the kernel of B, is strongly singular at the ends. Fortunately, the operator
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B,=B,0B;", (82)

restricted to smooth functions, is a sum of the identity and a compact operator. In other words, 1737 is a
second kind integral operator. Therefore, our representation for the solution of the Problem (69) and (70)
takes the form

u(x) = Py(n)(x) = P, o B (n)(x), (83)
with # the solution of the integral equation
B,(m)() = (). (84)

Finally, we remark that minor complications arise from the non-uniqueness of B;! (see (78) and (79)
above); they are resolved in Section 6.3.

5. Analytical apparatus II: open surface problem for the line segment I=[-1,1]
5.1. The integral operator Py

Definition 19. We will denote by F, the set of functions ¢: (—1,1) — R of the form

= = 0) + s lor s U), )
with ¢,y : [-1,1] — R twice continuously differentiable, and satisfying the conditions
/i log|1+1| - o(f)dt = 0, (86)
1
/_I fog|1 — |- o(z)d = 0. 87)

We will consider the integral operator P, : F; — C*(R*\ I) defined by the formula

1 1 2 1
Pi0)(x,y) = / Kilx,0)-o()dt = : / | g—; log((x — 5)2 + %) - ( / ogls—1]-o(9) dr) ds.  (88)

Obviously, P converts a function ¢ € F; into a quadruple layer potential whose density D(c) is in turn
represented by a single layer potential

1
D()(x) = / log |x — #| - o(£) de. (89)
-1
The following lemma provides an explicit expression for the kernel X; of P,.

Lemma 20. For any o € Fj,

Iy - (arctan ( lvl) + arctan (%)) N (x—1)- (log“('l"li)‘;”z - log(‘z“l"z)"?’2 )
(x-1"+) 2(x -1’ +5)
for any (x,y) € R®*\ I and any t € (—1,1).

, (90)

Kl(x!y’t) =
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Proof. Since log({x — s)2 + y?) satisfies the Laplace equation for any (x,) # (s,0), we have

o= +7) = - 5 Toa(ls -+

substituting (91) into (88) and integrating by parts once, we obtain

1 1
P =3 [ Sroa-s7+7)- ([ 2okl alyer)as

(x—l) +,v2 (x+1)

Combining (92) with (86), (87) and changing the order of integration, we have

Pio)(x,y) = /(/a log((s 2+yz)-%log|s—t|ds)-a(t)dt.

Hence,

(s —x)
) +)(s — 1)

Ki(x,p,t / — log({s —x)* + = lo —tlds = /
1) =5 | o loglls =2+ ) - o logls — =
Now, (90) follows immediately from the combination of (26) and (94). O

5.2. The boundary integral operator B;

We will define the integral operator B; : F; — L'[—1, 1] (see (85)) by the formula

1
Bi(o)x) =limP)xy) =lim [ Kifw0)- ol
=0 J1
The following lemma provides an explicit expression for B;.

Lemma 21. For any x € (—1,1),

Togl=—1o
Bi(0)(x) = 72 - o(x) + / —g-'——;—tg-—‘t o(6)dt.
-1 -
Proof. Substituting (90) into (95), we obtain
1 |y| - {arctan + arctan (1
Bi(o)(x) = lim ( ( ) ('y')) - o(f)dt

o CEDESD
2
g [0 (lo G — log
m

) - o(f)dr.
=0 J 2x-0"+5)

/logll—tl a(t)dt-———(—lj—x)— / log |1 +¢| - o(¢)ds.

53

(1)

(92)

(93)

(54)

(95)

(96)

67
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Combining (21) with the trivial identity

llin arctan ( O ) + arctan (l_!-;l_x> =n, xe€(-1,1), (98)
we have

. Lyl (arctan ( ) + arctan (—i))

P /.1 ((x 1) +?) ol = o) 9)

Now, applying Lebesgue’s dominated convergence theorem (see, for example [18]) to the second part of the
right-hand side of (97), we have

2 2
. 1 (x—1)- (log(l(l"zt;?'2 - log“ail)’?") .
/ 5 -o(t)dt
= G- 747 |
1 (x—1)- log("")z“”’2 log! (4202 ! jogl=x 1
= [ Im ( 0= (1+7? ).g(t)dt= / log i —loedf har. (100)
_1 ¥=0 2((x =0 +3?) -1 x—t

Finally, combining (99), (100) with (97), we obtain (96). [
Remark 22. Elementary analysis shows that

. logi=—log 4z 1 1 2
ltl-irxl x—1 T 1% 14x 1-x (101)

That is, the only singularities of the integral kernel in (96) are at the end points 1.
5.3. Connection between the operator By and the finite Hilbert transform

Lemma 23. For any o € F; (see Definition 19),
By(0)(x) = —H*(0)(x) (102)
for all x € (-1,1).

Proof. Due to (12),

72(0)(x) = / o ( / 5l dt) ds. (103)
Combining (37) with (103), we have

~ ! ! 1
2 = —{1?. _ .
H(0)(x) = —(n? - o(x) + /_1 (/_-1 ) ds) o(?) dt). (104)
Now, (102) follows immediately from the combination of (25), (96), (104). 0O

5.4. The inverse of H? for Chebyshev polynomials

In Section 5.5, we will need the ability to solve equations of the form (19). However, due to Corollary 4,
the solution to (19) is not unique. The purpose of this section is Theorem 28, stating that the solution to (19)
is unique if restricted to the function space F; (see Definition 19), and constructing such a solution.
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The following lemma is a direct consequence of Corollary 4 and Lemma 6.
Lemma 24. For any integer n > 0 and x € (=1, 1), all solutions of the equation
HYo,) =T, (105)
are given by the formula

oax) = Folx) + \/___ \/__ logii—x (106)

with Cy, C, arbitrary constants, and the functions G, defined by the formulae:

ao(x)=-1:—3-\/1"__ﬂ-1ogif;‘, (107)
and

azk(JC)——- VI / Uas ‘(’ (108)

~ Uzk 2 2 X

Gun () =25 V1 / =D -7 V== (109)

forallk>=1

We will define the operators J,L : C'[—1,1] — C[-1,1] via the formulae:

s = [ togh -2 ([ 2 as)ar (110)
L(qo)(x):/_: loglx—1]-V1—2- (/_:%ds)dt. (111)

The following lemma provides explicit expressions for the derivatives of J(¢), L(¢), and for the values of
J(9), L(p) at the points -1, 1.

Lemma 25. For any ¢ € C'[-1,1],
.2 o(x)
J(p)(x) =-m Vi (112)

Lo =0 VI=Z 47 [ plo)ds (13)
for any x € (-1,1), and

Je)~1)=n- ajﬁ’i@ o(s) ds, | (114)
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oy = [ “”j‘li(_% T pls)ds, (115)

L(p)(~1)=mn- /1 o(x) - (arccos(x) - V1 — x2 +log(2) - x — 1)dx. (116)

L((p)(l)zn-/1 o(x) - ((arccos(x) — m) - V1 — x? +log(2) - x + 1) dx. (117)
!

Proof. The identitics (114)—(117) are a direct consequence of (29)-(32) in Lemma 7, respectively. In order to
prove (112), substituting (110) into J'(¢) and interchanging the order of the differentiation and integration,

we obtain

J(0)(x) = /' L ll—tz_(/-:;?ifi}ds>dt. (118)

Applying (37) to the right-hand side of (118), we have
, T (C) <p(S) ( )
I = -w ot [ L a)e
[ el ( ' L. 1 )
/_,x—s /l L) (119)

Now, (112) follows immediately from the combination of (22), (119). The proof of (113) is virtually
identical to that of (112). 0O
The following lemma provides explicit expressions for J(Ty), with n=0,1,2,.

Lemma 26. For any x € [—1,1],

J(T)(x) = — %3 +n? - arccos(x) (120)
and ‘

J(Ton)(%) = 5= V1 =x% - Upp1 (%), (121)

J(Tz,,_l)(X) = - (2n2—1-t 1) 271 V1 - x2. Uz,,_z(x) (122)

foralln>=1
Proof. Substituting T into the Egs. (112) and (114), we obtain

J(To)(#)dt = (123)

1-2’

JT)(~1) =7 arccos(s)ds__Tc /"xdx=n

3
o 3 (124)
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Now, (120) follows immediatcly from the combination of (123) and (124), and the trivial identity
I =IE-D + [ I (125)
The proofs of (121), (122) are virtually identical to the proof of (120). O
The following lemma provides explicit expressions for L(U,), withn = 0,1,2,... It is a direct analogue of
Lemma 26, replacing the mapping J with the mapping L, and the polynomials 7, with the polynomials U,.

Its proof is virtually identical to that of Lemma 26.

Lemma 27. For any x € [-1,1],

L(Up)(x) =%2--(arccosx—x-\/l—xz)+2n-x—%3— (126)
and
2 X
L(Uy)(x) = % V1-x2. (Uznz—'ll(X) _ (;2;+_:~(2)> +2n2—1:_ 1 - X, (127)
2
L(Up)) = 5 VI (——Zj“j(’l‘) - ) Z"J(r"i) +2n- (ﬁ:}‘ff - (4n24j 1)2> (128)

foralln> 1

We are now in a position to combine the identities (27) and (28), Lemmas 24, 26 and 27 to obtain a
refined version of Lemma 24. The following theorem is one of principal analytical tools of this paper.

Theorem 28. Suppose that for eachn = 0,1,2,. .., the function 6, € F; (see Definition 19) is the solution of the
equation

H*(6,) = T, (129)
Then
1 x o 1+x 2(log2+1) 1
ao(x) = R B log1 = Dlog2 Tk (130)
. 1 ' Up(2) 2 x 1 1 1+x
= V]—x2. A TR .
oy (x = l—x L T—x dt e +2n3 T log1 — (131)
and
1 Y Uy (1) 2 2nlog?2 4n 1
=] —x. -1 - . - .
o2(x) = — Sl M dr —— og2 \a -1~ @7 — 17 — (132)
1 ' U0 2 x
] —. J — .
Ot (X) = o l1—x M dr i e (133)

foralln> 1.
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Finally, we will nced the following technical lemma.

Lemma 29. Suppose that the functions D, : [-1,1] — R with n=0,1,2,... are defined by the formula

1
Dy(x) = / log [x — 1] - 6,(f) dr, (134)
-1 )
with ¢, defined by (130)~(133) above.
Then
Do(x) = % N (135)
Dl(x)=2ln-x-\/l—x2 (136)
and
1 U,(x) Upafx)
=] —-x2. | /L2
D"(x)_Zn I-x (n+1 n—-1)’ (137)

forallnz2
Furthermore, for any integer n = 2, there exists a polynomial p,_(x) of degree n — 2 such that

D,(x) = (1-2)"* - p,a(x). (138)

Proof. The identities (135)—(137) are a direct consequence of the identities (27) and (28), and Lemmas 26
and 27. To prove (138), we first observe that (see, for example [2]) for all n =0,1,2,...,

U,(1)=n+1, (139)

U(=1) = (-1)"(n+1). (140)
It immediately follows from 139 and 140 that

U(=1) Upa(=1) _

o 7 =0, (141)

U,(1) U,-2(1)

o e =0 (142)

for any n = 2.
Now, we observe that the function
_U(x)  Upax)
W(x)—n+1 p— (143)
is a polynomial of degree n, and that the points x = +1 are the roots of W (see (141) and (142)). Therefore,
there exists such a polynomial p,_, of degree n — 2 that

28Tt (1) s | (144)
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Finally, we obtain (138) by substituting (144) into (137). O

5.5. The integral equation formulation for the case of a line segment

In this section, we will combine the results in previous four sections to solve the Dirichlet problem for the
line segment / = [—1, 1] on the real axis. The following lemma is a direct consequence of Theorems 13 and
28, and Lemmas 23 and 29.

Lemma 30. For any function f € C*|—1,1], there exists a unique solution o € F; (see Definition 19) to the
equation

Bi(o)(x) = - o(x) + /l W- o(t)dt = f(x); (145)

x—t

in other words, the operator B;'' is well defined if the range is restricted to the function space F;. Furthermore,
if f is orthogonal to Ty, Ty with respect to the inner product (3), then the function P(¢) can be continuously
extended to R

For the cases f = Ty, f = T;, we have the following lemma, easily verified by direct calculation.

Lemma 31.
1. The only bounded continuous solution to the problem

=0 inR?
{Au—OlnR\L (146)

u=1 onl
is
u?(x,y) = 1. (147)

2. The only bounded continuous solution to the problem

—0 in R2
{Au—OtnR\L (148)

u=x onl

is

_Nix,»)
#@ﬂ—me, (149)

with the functions N,D : R? — R defined by the formulae

NGy) =+ 17432 = /(= 12 4+ 52, (150)

D@Jﬁ=¢&+lf+yL+¢&—lf+yL+¢(¢&+lf+yl+¢@—lf+y02—£ (151)

respectively.
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Combining Lemmas 30 and 31, we immediately obtain the following theorem.

Theorem 32. Suppose that the function f : [-1,1] — R is twice continuously differentiable. Suppose further
that the function o € F; (see Definition 19), and the coefficients Ao, A1 satisfy the following equations:

Bo)) = ofs) + [ {(log-}—}’;‘— log +") / (r= B} -0()dt = F(x) — o — Ay -x,  (152)

1
-1

141t
! 1
—Ag— A4 %) ——=—=dx=0, 153
/—l(f(x) 0 1 x) \/I_—.;i ( )
! x
—~Ay—A)-x) —=dx=0. 154
[ U@ -to-a5) 158
Then the function u : R* — R defined by the formula
u(x1y) = P;(a)(x,y) +4o- u?(x:y) +4;- ull(x’y) (155)
is the solution of the problem :
Au=0 inR*\I,
{u =f onl (156)

Applying Theorem 28, we can now solve the Dirichlet problem (156) via the representation (155).

Corollary 33. Under the conditions of Theorem 32, the solutions to the Egs. (152)~(154) are

a-(x) =_1_..\/] _xz.f:ck./l Uk_l(t) dr+ By + By -x (157)
n - -1 xX—t V1—x2 1/l__xz’
Ao = C01 (158)
4= Ch (159)
where the coefficients By, B, are defined by the formulae
2 > 2klog?2 4k
B°—1I3-10g2 ;CZI:- (4k2_1 —(41(2—1)2), (160)
2 X Cun
B=G 2+ (161)

respectively, and C (k =0,1,2,...) are the Chebyshev coefficients of f given by (9) and (10).

Remark 34. It immediately follows from Lemma 29 that the function P,(¢) with ¢ given by (157) has an
explicit expression

1y — s =
A = || 2 Do (162

for any (x,y) € R?\ 1, with the function D(c) : [-1,1] — R defined by the formula




S. Jiang, V. Rokhlin | Journal of Computational Physics 191 (2003} 40-74

61
Ui-2(x) _ Uilx)
- — 3.
D(o)(x) = \/1 x ZC ( T 1) (163)
Finally, we will need the following lemma.
Lemma 35. Suppose that the operator S is defined by the formula
1
S6)6) = D& ) = [ togle—dl- B () (164)

with the operator B; defined in (96). Then S is a bounded linear operator from C[—1,1] to C[-1,1]
Proof. By Lemma 29, we have

ST = —=VI= 2,

(165)
1
S(M)x) = —5=-x-V1=2, (166)
and
1 Us(x)  Up-a(x)
=12 222 2V
for all n > 2. Substituting (5) into (167), we obtain
1 (sin((n+ 1) arccos(x)) sin((n — 1) arccos(x))
ST = - 55~ (St Deroeosta)_ sl ereeost)), (169
for all n > 2. Utilizing the trivial fact that |sin(u)| <1 for any real number u, we have
2 1
1S(T)llo < . (169)
for all n =0,1,2,... Now, any function ¢ € C?[—1, 1] can be expanded into a Chebyshev series
o0
=3 .G 1), (170)
n=0
and by Parseval’s identity,
Cc:= / ———dx <7 ||| 171
"2:'6 ‘/——— lells (171)
Applying Schwarz’s inequality, we have
o b 5 [ 1 12 /o 12
S < Col  IS(T) |l € = G = — - ct) L2 .
IS(0) oo < D 1G-S € 2D 2oy IGH< S (Zo (Hl)z) (Z ) ol

(172)
Since C?[-1,1] is dense in C[—1,1], § is bounded from C[-1,1] to C[-1,1]. O




62 S. Jiang, V. Rokhlin | Journal of Computational Physics 191 (2003) 40-74

6. Analytical apparatus I1I: open surface problem on a general curve

6.1. The integral operator P,

In this section, we consider the case of a general curve. We assume that y : [-1,1] — R? is a sufficiently
smooth “open” curve with the parametrization (71). The image of y is denoted by I'. We will consider the
operator P, : F; — C3(R*\ I") defined by the formula

1
Blo)) = [ Kfwn)-o)dr

L 86 0060 (g
== _|<6N(s)2 (s) ’c‘)N(s)) ( /_ logls t]o'(t)dt)ds, (173)

with L the arc length of y. The following lemma provides an explicit expression for the kernel X,. Its proof is
virtually identical to that of Lemma 20.

Lemma 36. For any ¢ € F; (see Definition 19),

! 6G.,(,)(x) 1
K,,(x, t) = » Wmds, (174)

for any x € R*\ T and t € (—1,1), with the integral in (174) intepreted in the principal value sense.
6.2. The boundary integral operator B,
We will then define the integral operator B, : Ff; — L'[—1, 1] by the formula
B,(6)(0) = lmP()o(0) + h- N() = iy [ : K,(0(8) + h-N(0),5) - o(s)ds. (175)

The following lemma is a direct consequence of Lemmas 12 and 21; it provides an explicit expression for
B,. '

Lemma 37. For any t € (—1,1),

1
B,(0)(t) =n* - a(}) +/ K.""(t,s) - 6(s)ds, (176)
-1
with the kernel K! : (=1,1) x (-1,1) — R given by the formula
1 8G,0((f) 1
b _ 2y W))
K¥(t,5) = L . (177)

with the integral in (177) intepreted in the principal value sense.
6.3. The integral equation formulation for the case of a general curve
Similarly to the operator B; defined in (96), the kernel K;’ of B, is strongly singular at the end-points.

Therefore, if the solution of the Dirichlet problem (69) and (70) is represented by the function P,(¢) on
R?\ I, then (70) will lead to a boundary integral equation
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By(o)(0) = S (1), (178)

which is not of the sccond kind. Because of the obvious similarity of the operators B, B,, it is natural to
consider the operator P, : C[—1,1] — C*(R?\ I') defined by the formula

By(n)(x) = P, o B (n)(x). (179)

Obviously, P,(7) is not defined when x € I, and we will define the operator B, : C[-1,1] — C[-1,1] by
the formula

B,(n)(0) = lim P,(n)(x) = B, o B} (n)(1). (180)

The following theorem is one of principal results of the paper; it states that Ev is a second kind integral
operator when restricted to continuous functions, and is an immediate consequence of Lemmas 15 and 35.

Theorem 38. Suppose that y: [-1,1] -—>~R2 is a sufficiently smooth “open” curve with the parametrization
(71). Suppose further that the operator R, : C[—1,1] — C[-1,1] is defined by the formula
1
Ro)) = [ ) -ol)dr (181)
-1

with the function 7 : [-1,1] x [-1,1] — R defined by the formula

=L (_2<N(r>,v(x) ), 1 ) LLoel) (V@@ —y0) 1
o4 ) =@ ) — @I 4 ) —r@IF  x-0*
' (182)
for all x # t, and by the formula
2

(2, 1) =£:a%(-f)—, (183)
for all x = t, with L the arc length of y, and c(t) the curvature of y at the point y(t). Then,

B,(n)(t) = (I + M)(n)(2), (184)

withI : C[—1,1] — C[-1, 1] the identity operator, and M : C[-1,1] — C[—1,1] a compact operator defined by
the formula

M(n)(2) = (B, — By) o By (n)(£) = R, o S(n)(2), (185)
with the operators EV,S : C[~1,1] = C[~1, 1] defined by ((181), (164)-(167)), respectively.

Remark 39. It immediately follows from the combination of (59) and (182) that the operator E, is related to
R, defined in Lemma 15 by the formula

R(@)) =5 Ri(0) (3 +1)), (136)

with (f) = o(4(t+ 1)), and the function ¥ is related to the function r defined in (59) by the formula

2

5, 8) =L-Z-r<§(x+l),§-(t+ 1)). (187)
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The function P () cannot, in general, be continuously extended to the whole plane R?, unless the density
n satisfies certain addltlonal conditions. The following lemma is a direct consequence of Theorems 13 and

28, and Lemmas 23 and 29.

Lemma 40. Suppose that the function n € C[-1,1] is orthogonal to Ty and Ty with respect to the inner product
(3). Then P ,(n) can be continuously extended to R>.

Lemma 40 above shows that the solution of the problem (69) and (70) cannot be represented by the
function P, (1) alone. Indeed, P, . ()(x) decays at infinity like 1/|x|, whereas Theorem 17 only requires that
the solutlon of the problem (69) and (70) be bounded at infinity. Suppose now that we can find two
functions u7 u, in S, (sec (68)) such that the following condition holds:

(1o, To)  {mo, 1)
det((n?,Tg) (n(:,T:)) 70, (188)

with 7, 1, the solutions to the equations

B, (no)(2) = u)(»(1)), (189)

By(n)(®) = w(6(), (190)

respectively, and the inner product in (188) defined by (3). Then the solution of the problem (69) and (70)
can be represented by the formula

u(x) = Py(n)(x) + Ao - (x) + 41 - uy(x), (191)
so that the density #, while satisfying the boundary integral equation
B,(n)() = £(2) — Ao - u)(¥(1)) — A1 - uy (v(1)), (192)

is also orthogonal to Ty and T;. The following lemma provides such two functions indirectly; it describes a
single-layer-potential representation for the functions Py(7,) (n = 2,3,....).

Lemma 41. Suppose that y: [—1, 1] — R? is a sufficiently smooth “open” curve with the parametrization
(71). Then for any n=2,3,...

P(T)(x =—Z. / Gyp(x) - \/_(_)_ /log|x y(8)| - \/__(t)_ (193)
forany x & I.
Proof. Combining (179), (173), (164), we have the identity
L [ PGyx) . 0Gu(X))
Bo@ =7 ( vy~ O )-soar (194)

for an arbitrary 5 € C[—1, 1]. In particular,

2 1 2 X NE;
Bmw =5/ (aa‘]’;’ft’)‘z)—c<z)a§;§gf)))-s(mo)dt. ss).
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Since the function G,,(x) satisfies the Laplace equation for all x # y(t), applying (33) to Gy, and car-
rying out elementary analytic manipulations, we obtain the identity

L [0Gyy(x) 3Gy (x)\ _ @Gy

e ( aN(1)? et oN() ) e (196)
and substitution of (196), (167) into (195) yields the identity

5 1 ['"&CGuw s (Unlt)  Una(t)

P,(]},)(x) = i; [l ——6;5'—— 1-2. (m =1 )dt (197)

Now, we obtain (193) by integrating by parts twice the right-hand side of (197). [J
The following lemma is an immediate conscquence of Lemma 41 and the well-known fact that the
functions #7 : R - R (n=0,1,2,...) defined by the formulae

W) =1, (198)

1
u;(x)=/ log x — ()] - "(’) _di, n=12,... (199)
-1 )
form a complete basis for the space Sy (see, for example [15]).

Lemma 42. Suppose that y [-1,1] = R? is a sufficiently smooth “open” curve with the parametrization
(71). Then the functions u ul , defined by (198) and (199) satisfy the condition (188)—(190).

Finally, we summarize our analysis for the case of a general curve by the following theorem.
Theorem 43. Suppose that y: [-1,1] — R? is a sufficiently smooth “open” curve with the parametrization

(71), and that the function f :[-1,1] — R is twice continuously differentiable. Suppose further that the
Sfunction n : [—1,1] — R, and the coefficients Ay, A\ satisfy the equations

By(m)(1) = (I + R, 0 S)(n)(t) = £ (1) — Ao - d(3(2)) — 4y - u} (¥(2)), (200)
! 1

/_ )= (201)

/l (t)-——'—dt—O 202
—1'1 -2 (202)

with I the identity operator, and the operators R,,S : C[-1,1] — C[-1,1] defined by (181) and (164), re-
spectively. Then the function u : R?> — R defined by the formula

u(x) = By (1) (x) + Ao - ul(x) + Ay - ul (x) (203)
is the solution of the problem
Au=0 inR?\T, ‘
{u =f onl, (204)

in (203), the operator P, : C[—1,1] — C(R?) is defined by (179), (173), (145), and the functions ul, ul are
defined by (198) and (199) respectively.
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Remark 44. For the case of several open curves I' = Y| 7;, the following modifications should be made.
Instead of (203), the function u will be given by the formula

u(e) = 3 {Pon) @) + 45 - (0) + 4wl (9} + C, (205)
i=1
with C a real number to be determined, and the functions # (i = 1,...,m; n =0, 1) defined by the formula
: T,(1)
n = lo — Y A1) - 2 de. 206
40 = [ toglk—n(0]- 7 (206)
The functions 7,, and the coefficients 45, 4}, C are determined as the solution of the system of equations
B (n)(t) = (T + Ry, 0)(n)() = £i(e) - Z {48 () - 4 - ()} - €, (207)
! 1

1) ———=dt = 208
[ n0-7= (208)

1 2
(2) t=0, 209
[ 0= (209)
Z Al =0. (210)

Clearly, the functions u0 defined by (206) are linearly independent; the constraint (210) and the constant
term C are introduced so that the function u is bounded at infinity.

7. Numerical algorithm

In this section, we construct a rudimentary numerical algorithm for the solution of the Dirichlet problem
(69) and (70) via the Egs. (200)-(202). Since the construction of the matrix and the solver of the resulting
linear system are direct, the algorithm requires O(N*) work and O(N?) storage, with N the number of nodes
on the boundary. While standard acceleration techniques (such as the Fast Multipole Method, etc.) could
be used to improve these estimates, no such acceleration was performed, since the purpose of this section
(as well as the following one) is to demonstrate the stability of the integral formulation and the convergence
rate of a very simple discretization scheme.

By Theorem 43, the equations to be solved are (200)(202), where the unknowns are the function #, and
two real numbers A4, 4;. To solve (200)-(202) numerically, we discretize the boundary into N Chebyshev
nodes and approximate the unknown density n by a finite Chebyshev series of the first kind,

N-1 .
n(t) =Y Ce- Ti(e), @11)
k=0

with the coefficients C; (k=0,...,N — 1) to be determined. In order to discretize (200), we start with
observing that by (165)—(167), the action of the operator S on the function 7 is described via the formula
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N=1 [N-1
2
Sty = (ZBkj : C,-> = Ui(x) - V1 =22, (212)
k=0 \ j=0
where the matrix B = (By) (k,j=0,...,N — 1) is given by the formulae
By = _"%'1
By =—gz, 1<k<N-1, (213)
Bijs2 =7r» O0<k<N -3,
By =0, otherwise.

In other words, given a function # expressed as a Chebyshev series of the first kind, (212) expresses S(1)
as a Chebyshev scries of the second kind. Now, it is natural to approximate the operator R, by an ex-
pression converting functions of the form

N-1
> o - Uilt) (214)

k=0

into functions of the form

N-1
> B Til), (215)

k=0

with the product E, o § converting expressions of the form (215) into expressions of the same form. Thus,
we approximate the kernel F(x,7) (see (182)) of the operator R, with an expression of the form

N-1 N-1

Fr ) =) D Ky Tix) - U(e). (216)

i=0 j=0

Clearly, the coefficients K;; have to be determined numerically, since the curve I' is user-specified, and is
unlikely to have a convenient analytical expression. Thus, we obtain the coefficients K;; by first constructing
the N x N matrix R = (F(x;,¢;)) (i,j =0,1,...,N — 1) with x;(i=0,1,...,N — 1) the Chebyshev nodes
defined by (4) and #(j =0,...,N — 1) the Chebyshev nodes of the second kind defined by (7), then con-
verting R into the matrix X = (K;;)(i,j =0,1,...,N — 1) by the formula

K=U-R-V, (217)
with N x N matrices U = (Uy;), ¥V = (¥};) defined by the formulae
Uy=2% Tlx), j=01,....,N—-1, (218)
ljij‘:'iv—'ﬂ(xj)’ i=1,...,N—1, j=0,1,...,N—1,
_ 2 ) (N—l)ﬂ' — )
I/;j_N_I_l sm( N1 ) Ui(t), i,j=0,1,...,N—1, (219)

respectively. We then approximate the prescribed Dirichlet data f by its Chebyshev approximation of order
N-1

f0 =S f- T, (220)

k=0
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where the coefficients f, can be obtained by first evaluating f* at Chebyshev nodes x;, then applying to it the
matrix U defined by (218), i.e.,

N-1
fe=Y U flx). (221)

i==0

Similarly, we approximate the function u;, (see (199)) with an expression of the form
N-l
up (y(1)) = k}; i - Ti(8), (222)
with the coefficients #; defined by the formula
N-1
iy =Y U uy(y(x)), (223)
i=0

with x; the Chebyshev nodes defined by (4). Combining (212), (216), (221), and (222), we discretize (200)
into the equation

_ Co 1 l:lo fl)
738 A PO [ FOVIY Bl I O (224)
Ch;-l 0 ﬁl\;-l f;,._l
with N x N matrix 4 defined by thé formula
A=Iy+K-B, (225)
with Iy the N x N identity matrix. Furthermore, (201) and (202) lead to the equations
Co =0, (226)
C =0. (227)

Finally, combining (224), (226), (227), we obtain the following linear system of dimension N + 2 to be
solved

100...0 0 0 G 0
010..0 0 0 c 0
I : Jo

. ; 2 (228)
A 0 u.l CN—] fl
: . Ao K
0 iy 4 Fr-1

Remark 45. Having solved (228) with any standard solver (we used DGECO from LINPACK), we can
compute the solution of the Problem (69) and (70) at any point in R? via (203).

Remark 46. The algorithm can be generalized to the case when the boundary consists of several disjoint
open curves, and the generalization is straightforward (see Remark 44).
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8. Numerical examples

A FORTRAN code has been written implementing the algorithm described in the preceding section. In
this section, we demonstrate the performance of the scheme with several numerical examples. We consider
the problem in electrostatics: the boundary is made of conductor and grounded, the electric field incident
on the boundary is gencrated by the sources outside the boundary; that is to say, there are three fields
present: the incident ficld u;, the reflected field u;, and the total field u = u; + u;, where u, =0 on the
boundary, and u = —u; on the boundary and is harmonic elsewhere. For these examples, we plot the
equipotential lines of the total field and present tables showing the convergence rate of the algorithm by
computing the errors of the reflected field.

Remark 47. In the examples below, the problems to be solved via the procedure of the preceding section
have no simple analytical solution. Thus, we tested the accuracy of our procedure by evaluating our so-
lution via the formula (203) at a large number M of nodes on the boundary I" (in our experiments, we
always used M = 4000), and comparing it with the analytically evaluated right-hand side. We did not need
to verify the fact that our solutions satisfy the Laplace equation, since this follows directly from the rep-
resentation (203).

In each of those tables, the first column contains the total number N of nodes in the discretization of
each curve. The seccond column contains the condition number of the linear system. The third column
contains the relative L? error of the numerical solution as compared with the analytically evaluated Di-
richlet data on the boundary. The fourth column contains the maximum absolute error on the boundary. In
the last two columns, we list the errors of the numerical solution as compared with the numerical solution
with twice the number of nodes, where the solution is evaluated at 4000 equispaced points on a circle of
radius 1.4 centered at the origin; the fifth column contains the relative L? error, and the sixth column
contains the maximum absolute error.

Example 1. In this example, the boundary is the line segment parametrized by the formula

50Tt 1 )

The Dirichlet data are generated by a unit charge at (0,0). The numerical results are shown in Table 1.
The source, curve and equipotential lines are plotted in Fig. 1.

Example 2. In this example, the boundary is an elliptic arc parametrized by the formula

x(f) = 0.8cos(¢), _
{y(t) — 0.5sin(r) 4 0.25, "SISO (230)

Table 1
Numerical results for Example 1
N K EXI) E=(I) E%(u) E>(u)
4 0.524E + 01 0.288E + 00 0.607E + 00 0.513E -01 0.590E — 01
8 0.450E + 01 0.703E - 01 0.178E + 00 0.613E — 02 0.686E — 02
16 0.388E + 01 0.759E — 02 0.212E - 01 0.133£ -03 0.146E - 03
32 0.344E + 01 0.165E - 03 0.486FE - 03 0.115E - 06 0.126E — 06
64 0.3182 + 01 0.147E - 06 0.446F — 06 0.146E — 12 0.164E — 12

128 0.303E + 01 0.252E - 12 0.839E — 12 0.250E — 13 0.265E — 13
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Fig. 1. Source, curve, and equipotential lines for Example 1.
Table 2
Numerical results for Example 2
N K EXI) E=(I) E2(u) E>(u)

4 0.513E + 01 0.180E + 00 0.124E + 00 0.343E - 01 0.166E — 01
8 0.461E 4+ 01 0.722F - 01 0.554E - 01 0.668E — 02 0.333E - 02
16 0.399E + 01 0.103£ - 01 0.833E - 02 0.155E - 03 0.773E - 04
32 0.352E + 01 0.230€ - 03 0.187E - 03 0.855E - 07 0.426E — 07
64 0.316E + 01 0.128E —- 06 0.105E - 06 0.475E — 13 0.201E~-13
128 0.301E + 01 0.141E — 12 0.134E — 12 0.272E - 13 0.102E ~ 13

The Dirichlet data are generated by one positive charge of unit strength at (0,0) and another negative
charge of unit strength at (0,—0.5). The numerical results are shown in Table 2. The sources, curve, and
equipotential lines are plotted in Fig. 2.

Example 3. In this example, the boundary is a spiral parametrized by the formula
x(t) = tcos(3.3t) — 0.1,
{y(t) — tsin(3.31), 02112 (231)
The Dirichlet data are generated by a unit charge at (0,0). The numerical results are shown in Table 3.
The source, curve, and equipotential lines are plotted in Fig. 3.
Example 4. In this example, we consider the case of several open curves. The boundary consists of three

elliptic arcs parametrized by the formulae
(232)

{x.(z):l.lcos(t)—l, —£<t<§,

w(#) = sin(z) + 0.5, 12
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Fig. 2. Sources, curve, and equipotential lines for Example 2.

Table 3
Numerical results for Example 3
N K E¥(I) E=(I) E*(u) E>(u)
8 0.325E + 02 0.215E ~ 01 0.323E - 01 0.478E + 00 0.426E + 00
16 0.579E + 01 0.549E — 03 0.986E — 03 0.658E — 01 0.820E —- 01
32 0.478E + 01 0.211E - 05 0.317E - 05 0.149E - 02 0.194E — 02
64 0.424E + 01 0.987E — 11 0.122E-10 0.350F — 06 0.453E — 06
128 0.392E + 01 0.861E - 13 0.520E - 12 0.127E - 12 0.119E - 12
256 0.374E -+ 01 0.138E — 12 0.139E - 11 0.139 — 12 0.123£ - 12

x(t) = L.1cos(?), n lin

{yz(f) —sin()-12, 2SS T2 (233)
x3(f) = Llcos(t)+1, _ 3m _5m

{y;(t) = sin(z) 4 0.5, 4 SIS 12° (234)

The Dirichlet data are generated by a unit charges at (0,0). The numerical results are shown in Table 4,

where N is the number of nodes on each curve. The source, curves, and equipotential lines are plotted in
Fig. 4.

Remark 48. The above examples illustrate the superalgebraic convergence of the scheme for smooth data
and curves (see Remark 16 in Section 2.6). The number of nodes needed depends on the complexity of the

underlying geometry and the smoothness of the prescribed data. The condition number of the resulting
linear system is usually very low.
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Fig. 3. Source, curve, and equipotential lines for Example 3.

Table 4
Numerical results for Example 4
N K EX(I) E>(I) E*(u) E>(u)
4 0.845E + 01 0.113E - 01 0.228E — 01 0.493E — 03 0.117E - 02
8 0.754E + 01 0.126E - 03 0.269E — 03 0.159E - 05 0.108E — 04
16 0.689E + 01 0.173E - 07 0.390E — 07 0.656E - 10 ’ 0.452E — 09
32 0.649E + 01 0443E-12 0.196E — 11 0.950E — 13 0.113E-12
64 0.627E + 01 0.658E - 13 0.295E - 12 0.492E —~ 14 0433E-14
128 0.615E + 01 0.880F — 13 0.356E - 12 0.968E — 14 0971E - 14

9. Conclusions and generalizations

We have presented a stable second kind integral equation formulation for the Dirichlet problem for the
Laplace equation in two dimensions, with the boundary condition specified on a curve (consisting of one or
more separate segments). The resulting numerical algorithm converges superalgebraically if both the
boundary data and the curves are smooth. Obviously, the combination of the Fast Multipole Method (see,
for example, [7]) and any standard iterative solver yields an O(N) algorithm, with N the number of nodes
on the boundary.

The extensions of the scheme of this paper to other boundary conditions (such as Neumann condition,
Robin condition, etc.) specified on an open curve I' in R? are fairly straightforward. For the Neumann
problem, representing the solution in the form of a double layer potential, one obtains a hypersingular
integral equation on I'. Its subsequent preconditioning by a single layer potential yields a second kind
integral equation (SKIE). For a Robin problem, one obtains an SKIE formulation by representing the
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Fig. 4. Source, curves, and equipotential lines for Example 4.

solution via an appropriate linear combination of single and double layer potentials, with a further pre-
conditioning by a single layer potential. Furthermore, the approach of this paper can be applied almost
without modification to elliptic PDEs other than the Laplace equation (such as Helmholtz equation,
Yukawa equaiton, etc.). Indeed, the Green’s function for any such equation has the form

G(x7y) = ¢(x:y) ) IOg(”x -y”) + '/’(x’y)’ (235)

with ¢, ¥ a pair of smooth functions, and ¢(0,0) = 1/(2x) (see, for example [4]). When the procedure of
Section 6 of this paper is applied to a Green’s function of the form (235), the result is virtually identical to that
obtained in Section 6.3, except for the change in the compact operator P, in (179). However, the convergence
rate of the numerical scheme of Section 7 deteriorates drastically, since in this case the kernel X of the op-
erator P, in (179) is logrithmically singular (while for the Laplace equation, it is smooth). High-order dis-
cretization schemes for such integral equations can be found in the literature (see, for example [1,12,20]).

Needless to say, three-dimensional versions of most problems of mathematical physics are of more
immediate applied interest than their two-dimensional versions. Thus, the results of this paper should be
viewed as a model for the investigation of the Dirichlet problem for the Laplace equation (or some other
elliptic PDE) in three dimensions, with the data specified on an open surface S. When the boundary § is
smooth, the transition is fairly straightforward; it becomes more involved when S itself has corners. Both
cases are presently under investigation.
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Abstract

A second kind integral equation formulation is presented for the Dirichlet problem for the Laplace equation in two
dimensions, with the boundary conditions specified on a collection of open curves. The performance of the obtained
apparatus is illustrated with several numerical examples. The formulation is a simplification of the equation previously
constructed by the authors. )
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1. Introduction

Integral equations have been one of principal tools for the numerical solution of scattering problems
for more than 30 years, both in the Helmholtz and Maxwell environments. Historically, most of the
equations used have been of the first kind, since numerical instabilities associated with such equations
have not been critically important for the relatively small-scale problems that could be handled at the
time.

The combination of improved hardware with the recent progress in the design of “fast” algorithms has
changed the situation dramatically. Condition numbers of systems of linear algebraic equations resulting
from the discretization of integral equations of potential theory have become critical, and the simplest way
to limit such condition numbers is by starting with second kind integral equations. Hence, increasing in-
terest in reducing scattering problems to systems of second kind integral equations on the boundaries of the
scatterers.
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During the last several years, satisfactory integral equation formulations have been constructed in both
acoustic (Helmholtz equation) and electromagnetic (Maxwell’s equations) environments, whenever all of
the scattering surfaces are *“closed” (i.e., scatterers have well-defined interiors, and have no infinitely thin
parts). In this paper, we describe a second kind integral equation formulation for the Dirichlet problem for
the Laplace equation with boundary data specified on a collection of “open” curves. We start with con-
structing the right inverse of the single layer potential operator on a line segment via simple analytic means;
then we apply such operator as a preconditioner for the single layer potential operator on the curve
considered to obtain a second kind integral operator.

Remark 1. In a recent paper [7], the authors construct a somewhat different procedure for the solution of
problems of the classical potential theory with data specified on a collection of open surfaces. While the
approach of the present paper is very similar to that of [7], in [7], the single layer potential is used to
precondition the quadruple layer potential from the right; here, the quadruple layer potential is used to
precondition the single layer potential from the right. For technical reasons, the latter leads to a drastically
simplified numerical procedure (and also, requires simpler analysis); hence, this sequel to [7].

Remark 2. As observed by one of referees to this paper, a second kind integral equation is constructed in
[11] (Chapter 16) in the Laplace environment. In [11], the solution of the Dirichlet problem is represented
via the real part of the Cauchy’s integral and the resulting boundary equation is a singular integral
equation. A second kind integral equation is then obtained by applying the inverse operator of the Cauchy’s
integral operator from the left to both sides of the equation. However, the scheme of [11] cannot be easily
extended either to three dimensions or to the Helmholtz equation in two dimensions, since it relies heavily
on the harmonic property of the solution and the techniques of complex analysis.

Remark 3. As observed by another of referees to this paper, a closed surface enclosing very thin volumes
presents difficulties closely related to those associated with open surfaces. This class of issues is not treated

in this paper.

The layout of the paper is as follows. Section 2 contains an informal description of the procedure. In
Section 3, the necessary mathematical and numerical preliminaries are introduced. In Sections 4, we present
the principal analytic result of the paper. In Section 5, we describe a simple numerical implementation of
the scheme. The performance of the algorithm is illustrated in Section 6 with several numerical examples.
Finally, in Section 7 we discuss several generalizations of the approach.

2. Informal description of the procedure

In this section, we present an informal description of the procedure. We assume that y : [-1,1] — R%isa
sufficiently smooth “open” (i.e., y(—1) # y(1)) curve with the parametrization

10 =7(3 ¢+1), ()

where L is the total arc length of the curve, and ¥ : [0,L] — R? is the same curve parametrized by its arc
length. The image of y will be denoted by I". We consider the Dirichlet problem for the Laplace equation in
two dimensions, with the boundary conditions specified on T, i.e.,

Au=0 in R*\T,
{u=f on I @
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This problem has a unique bounded solution if the Dirichlet data f is sufficiently smooth (see, for example,
[9, p. 121]). The purpose of this paper is to reduce the problem (2) to a second kind integral equation on I.

The tools of the classical potential theory by themselves do not lead to such an integral equation. Indeed, the
standard prescription (see, for example, [9]) is to represent the solution of a Dirichlet problem by a double layer
potential, and the solution of the Neumann problem by a single layer potential. In either case, the behavior of
the singularity near the boundary is such that an integral equation of the second kind on I' is obtained.

However, the classical procedure critically depends on I being a closed curve. Indeed, the potential of a
double layer on the curve I' experiences a jump when I’ is crossed; the magnitude of the jump is equal to the
density of the double layer at the crossing point. This poses no problem when the curve is a closed one, since
the potential is to be represented on only one (inner or outer) side of the curve. For an open curve, the
potential has to be represented on both sides of the curve; and in most cases, the right-hand side f (viewed
as the limiting value of the solution from both sides) has no jump across I'. Thus, an attempt to represent
the solution of (2) via a double layer potential results in a dipole density that is identically equal to zero.

One could attempt to represent the solution of (2) by a charge distribution on I'. The resulting potential
is continuous across I', and algorithms of this type have been constructed and used numerically (see, for
example, [6]). However, the resulting integral equation is of the first kind (though, fortunately, with a
logarithmically singular kernel), with all the usual numerical disadvantages. Another option is to use the
quadruple layer potential of the form

H 2
R = [ ﬁ(—t)—zaog e =9I - o(r)d, )

with N(¢) the unit normal to I' at y(¢); the resulting equation is not an integral equation at all, containing a
part that is actually a distribution. In engineering literature, such objects are known as “hypersingular
integral equation”. Satisfactory procedures have been constructed for their numerical solution (see, for
example, [3,10,12]); however, these are not as simple or as stable as the many methods available for the
solution of second kind integral equations.

This paper is based on the observation that when the curve is the line segment I = [-1, 1], the right
inverse of the single layer potential operator (denoted by S;!) can be constructed by simple analytic means,
where the single layer potential operator S; : L'[—1,1] — C[~1, 1] is defined by the formula

1
Si(o)(x) = /_ 1 log|x — ¢t - a(z)dr. (4)

Furthermore, if ;! is used as a preconditioner for the single layer potential operator S, : L'[~1,1] — C( R?)
on I defined by the formula

1
50 = [ togls =0 a()dr, )
i.e., the solution of the problem (2) is represented in the form
u(x) = S,08;" () (), (6)

then the resulting boundary integral equation is of the second kind.

Remark 4. A stable second kind integral equation formulation has also been developed for the problem (2)
in [7]. Two key observations used in [7] are: first, the product of the quadruple layer potential operator and
the single layer potential operator is a second kind integral operator for the case of a closed curve; second,
the case of a line segment can be solved analytically. The integral representation for the solution of the
problem (2) in [7] is of the form
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u(x) = 0,08,0(0,08)" ()(x), (7)

where Q, is the sum of a quadruple layer potential and a weighted double layer potential with the weight
equal to the curvature, S; is the single layer potential operator for the line segment 7 = [—1,1], and
(Q,OS,)'l is (in the appropriate sense) the right inverse of Q;OS;. The approach of this paper differs from
that of [7] in that the roles of Q and S are interchanged, leading to a simpler scheme. Indeed, straight-
forward analysis shows that the representation (6) is equivalent to

u(x) = §,00,0(5,00,)™" () (). (8)

In other words, the solution of (2) is represented by a single layer potential on I" preconditioned by the
quadruple layer potential for the line segment 7, with a further preconditioning by the right inverse of
S;00; to climinate the singularities at the end points.

3. Analytical preliminaries

In this section, we summarize several results from classical and numerical analysis to be used in the
remainder of the paper. Detailed references are given in the text.

3.1. Chebyshev polynomials and Chebyshev approximation

Chebyshev polynomials are frequently encountered in numerical analysis. As is well known, Chebyshev
polynomials of the first kind T, : [-1,1] — R (n > 0) are defined by the formula

T,(x) = cos(narccos(x)), ' 9

and are orthogonal with respect to the inner product
1
1
(r9)= [ 16) gl . (10)
-1 1-x2 ,
Chebyshev polynomials of the second kind U, : [~1,1] — R (n > 0) are defined by the formula
__sin((n + 1) arccos(x))
Unlx) = sin(arccos(x)) (11)

and are orthogonal with respect to the inner product

1
(9)= [ 16)-ge) VT =P (12
The Chebyshev nodes x; of degree N are the zeros of Ty defined by the formula
Qi+ m |
x,~=COS-——2-]—V—, l=0,1,...,N—1. (13)

For a sufficiently smooth function f : [~1,1] — R, its Chebyshev expansion is defined by the formula
) =Y Ci L), (14)
k=0

with the coefficients C; given by the formulae
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Co-*“/ S) To(x) (1 -5 dx, (15)

and

Co=2 / £0) - Tilx) - (1 — ) d, (16)

for all k > 1. We will also denote by P” the order N — 1 Chebyshev approximation to the function f on the
mterval [-1,1], ie., the (unique) polynom1a1 of order N — 1 such that P} (x;) = f(x;) for all i =0,1,.

— 1, with x; the Chcbyshev nodes defined by (13).

The following lemma provides an error estimate for the Chebyshev approximation (see, for example, [4]).

Lemma 5. If f € C}[-1,1] (ie., f has k continuous derivatives on the interval [—1,1]), then for any
xe[-1,1],

P - 6| =03 ) (1)

In particular, if f is infinitely differentiable, then the Chebyshev approximation converges superalgebraically
(i.e., faster than any finite power of 1/N as N — o0).

3.2. Miscellaneous results

In this section, we collect several results from classical analysis to be used subsequently. Lemma 6 lists
two standard definite integrals; both can be found (in a somewhat different form) in [5]. Lemma 7 states a
standard fact from classical potential theory; it can be found in [9]. Finally, Lemma 8 states that if the curve
y is sufficiently smooth, then the restriction of the kernel of the operator S, — S; on I is also smooth (see (4),
(5) for the definitions of S; and §,).

Lemma 6. For any x € (—1,1),

1
1
1 -t ———=dt = —n-log2, 18
/_1 oglx — 1t Wi - log (18)
and
1
p.V./ ;—I—I'U_](t)'VI—tzdt::n'n(x)a (19)
-1 X

foranyn 2z 1.

Lemma 7. Suppose that y : [-1,1] — R? is a sufficiently smooth open regular curve with the parametrization
(1), and that the function ¢ € L'[—1, 1] satisfies the condition

/ ] o(t)dt = 0. (20)

1
Then the function u : R? — R defined by the formula

1
u(x) = /_ logx =509 (1) 21)

is bounded in R?.
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Lemma 8. Suppose that y € C**'[0,L] (k > 1) is an open regular curve parametrized by its arc length in R>.
Suppose further that the function r : [0,L] x [0,L} — R is defined by the formula

r(x, 1) = {:)?g li(’i t_ y(0) —loglx — 1], x+#t, )

Then r € CX([0,L] x [0, Z]).

Proof. Since y is parametrized by its arc length, we have

()l =1, (23)
for all x € [0,L]. Combining (22), (23), we observe that
r(x,t) = log|h(x, )|, (24)

where the function 4 : [0,L] x [0,L] — R? is defined by the formula

_[HE0 x4y,
M) = {v’(X5, x=t @)

Obviously, 4 is k times continuously differentiable for y € C*![0, L] by Taylor’s Theorem. Furthermore,
since y(x) # y(¢) if x # ¢, and |y'(x)| = 1 for all x € [0, L], we have

|h(x,2)] #0 for all (x,?) € [0,L] x [0,L]. (26)

Therefore, the function » = log |A| is also k times continuously differentiable in {0,L] x [0,L]. O

4. Analytical apparatus
4.1. Right inverse of the single layer potential operator on the line segment

The purpose of this section is Theorem 10, providing the right inverse of the single layer potential
operator on the line segment 7 = [—1, 1]. The construction is based on an elementary integral identity stated
in Lemma 9.

Lemma 9. For any x € (—1,1),

/ log v — 1] - T"(’) A dr = —n-log2- Ty(x), 27)
an
/ loglx — 1] - ‘/ﬂ‘_)_ﬁ Z 1) (28)

forany n>1.

Proof. (27) directly follows from the combination of the identity (18) and the fact that T(x) = 1 for all
x € [-1,1]. To prove (28), we integrate by parts once, obtaining
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1
/ log fx 1] - "(’) i ds ——%p.v./ x—_l_—t-U,,_,(t)-\/l—tZdt. (29)

-1

Now, (28) follows from the combination of (29), (19). O

Theorem 10. Suppose that the linear operator § : C[—1,1] — L'[—1,1] is defined by its action on the functions
T, (n = 0) via the formula

R S (1) N
ST =1 RV (30)
R
Suppose further that the operator Sy : L'[—1,1] — C[-1,1] is defined by the formula
1
S/(0)(x) = / log [x — 1] - o(t) dt. (31)
-1
Then
508 = 5, (32)

with S the identity operator. In other words, S is the right inverse of Sy on the space of continuous functions.

Proof. Since 7, (» = 0) form a basis for the space C[-1, 1], and the operators S;, S are linear, we only need
to prove that the identity

5;08(T)(x) = T,(x) (33)
holds for all » = 0. Substituting (30) into (31) we obtain
1 /‘ To(t)
_ —— | loglx—¢- n=0,
SOS(T)x) =4 ™ o8 ( ) G4
—— / log|x — 1} - n>0.
Combining (33), (34), we observe that it suﬂ‘ices to prove the identity
1 T,(f) —n-log2- Ty{x), n=0,
loglx—1] —==dt=¢{ ™ 35
[oste =i = { T ase )

which directly follows from Lemma 9. O
4.2. Second kind integral equation formulation

In this section, we reduce Problem (2) to an integral equation of the second kind on the curve I'; the
results are summarized in Theorem 12. We start with defining the operator §, : C[—1,1] — C(R?) via the

formula

5,(0)(2) = 5,05(0)(2), (36)
with §,, S defined by (5), (30), respectively. Combining (36) with Theorem 10, we easily see that for ar-
bitrary smooth ¢: [~1,1] —» R and y(x) € I,

5,(0)(3(x)) = SiOS(0)(x) + (S, = S)OS(0)(¥(¥)) = o(x) + (S, — $)OS (o) (¥()), (37)
and the following theorem shows that the operator P, = (S, — S5)OS is compact.
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Theorem 11. Suppose that y : [-1,1] — R? is a sufficiently smooth open regular curve with the parametri-
zation (1). Suppose further that the operator P, : C[-1,1] — C[-1,1] is defined by the formula

~ ! ~
Py(0)(x) = (S, — S1)OS8(0)(v(x)) = /_ 1 (log [y(x) = y(5)] — log|x —#]) - S(0)(r) d, (38)

with S, S, S defined by (5), (31), (30), respectively. Then P, is compact.

Proof. By Lemma 8, the function 7 : [—1,1] x [-1,1] — R defined by the formula
#(x, 1) = log|y(x) — %(¢)| —log}x — 1 (39)

is k times continuously differentiable for any y € C**![-1,1]. Obviously, if 7 is expanded into a double
Chebyshev series

oS o0
o) =3 > KnTW(x)T(0), (40)
m=0 n=0
then there exists a positive number C such that
c
|Kn| < — (41)

for any m > 0, n > 0. Now, for any N > 0, we will define the operator Py : C[—1,1] — C[-1,1] by the
formula

1
Pu(0)(x) = / (1) - S(o)dt, @)
-1
with the function 7y : [-1,1] x [-1,1] — R defined by the formula
N N
) = > KunTu(®)T(0). (43)
m=0 n=0

Obviously, Py is a compact operator since its range is of finite dimensionality. Furthermore, Py con-
verges to P, as N — oo by (41). Hence, P, is also a compact operator.
We will represent the solution of Problem (2) via the formula

~ l —~
) =500 +4 = [ logle=3(0)]- 5@+ 4, (44)

where A is a real constant to be determined. Combining Lemma 7 and Theorem 11, we obtain the principal
result of this paper. 0O

Theorem 12. Suppose that y: [~1,1] — R? is a sufficiently smooth open regular curve with the parametri-
zation (1), and that the function f : [—1,1] — R is continuously differentiable. Suppose further that the con-
tinuous function ¢ : [—1,1] — R and the coefficient A satisfy the equations

o(x) + B (0)(x) = f(x) — 4, (45)

! 1
/., 0 e =0 (46)
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with P, defined in (38). Then the function u : R? — R defined by (44) is bounded in R? and is the solution of the
problem

Au=0 inR?\ T,
{u:f onT. (47)

Remark 13. Obviously, the purpose of the constant 4 in the above theorem is to ensure the boundedness of
the solution u of (2). In certain physical situations, the potentials of interest are not bounded at infinity, but
rather grow logarithmically. In such cases, the solution to (2) assumes the form

u(x) = S,(0)(x), (48)
with ¢ satisfying the integral equation
a(x) + Py (0)(x) = f(x). (49)

5. Numerical algorithm

In this section, we construct a rudimentary numerical algorithm for the solution of the Dirichlet problem
(47) via the Egs. (45) and (46). Since the construction of the matrix and the solver of the resulting linear
system are direct, the algorithm requires O(N*) work and O(N?) storage, with N' the number of nodes on
the boundary. While standard acceleration techniques (such as the Fast Multipole Method, etc.) could be
used to improve these estimates, no such acceleration was performed, since the purpose of this section (as
well as the following one) is to demonstrate the stability of the integral formulation and the convergence
rate of a very simple discretization scheme.

By Theorem 12, the equations to be solved are (45) and (46), where the unknowns are the function ¢ and
the real number 4. To solve (45) and (46) numerically, we discretize the boundary into N Chebyshev nodes
and approximate the unknown density o by a finite Chebyshev series of the first kind,

o)~ G T, (50)

=0
with the coefficients C; (k =0,...,N — 1) to be determined. In order to discretize (45), we start with ob-
serving that by (29), the action of the operator S on the function o is described via the formula

1 N-1
By - C - Ti(x), 51
\/l—ng e G Ti(x) (51)
where the coefficients By (k= 0,...,N — 1) are given by the formulae
1
~mlog2’
st (52)
Bk‘=--;, lngN—l

S(o)x) =

By =

Next, we approximate the kernel #(x, ¢) (see (40)) of the operator S, — S; with an expression of the form

N-1 N-1

Foo ) =Y > Ky Tix) - T(9). (53)

=0 j=0
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Clearly, the coefficients K;; have to be determined numerically, since the curve I' is user-specified, and is
unlikely to have a convenient analytical expression. Thus, we obtain the coefficients Kj; by first constructing
the N x N matrix R = (F(x;,1;)) (i,j=0,1,...,N — 1) with x;,#; the Chebyshev nodes defined by (13) then
converting R into the matrix K = (Kj;) (i,/=0,1,...,N — 1) by the formula

K=U-R-UT, (54)
with N x N matrix U = (Uj;) defined by the formula

U0j=-1:—','7.b(x‘/), j=0,1,...,N“‘ 1, (55)
l]ijzl%l'z;(xf)’ i=1,,..,N—l, j=0,1,...,N—1,

Finally, we approximate the prescribed Dirichlet data f* by its Chebyshev approximation of order N — 1
N-1
f0=>_ S L), (56)
k=0

where the coefficients £, can be obtained by first evaluating f at Chebyshev nodes x;, then applying to it the
matrix U defined by (55), i.e.,

N-1
fe=> U f(x) (57)
i=0
Combining (51), (53), (56),we discretize (45) into the equation
Co : 5
~ Ci . h
A- . -+ A : = . ’ (58)
. 0 . M
Cn-1 Tn-i

with N x N matrix 4 defined by the formula

A=Iy+K-B, (59)
with Iy the N x N identity matrix, and B the diagonal matrix defined by the formula

B =B, -4, (60)
Furthermore, (46) leads to the equation

Co=0, (61)

Finally, (58) and (61) together form a linear system of dimension N + 1 to be solved.

Remark 14. The generalization of the above scheme to the case of several disjoint open curves is
straightforward, and has been implemented by the authors (see Example 4 in Section 6).

6. Numerical examples

A FORTRAN code has been written implementing the algorithm described in the preceding section. In
this section, we demonstrate the performance of the scheme with several numerical examples. We consider
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the problem in electrostatics: the boundary is made of conductor and grounded, the electric field incident on
the boundary is generated by the sources outside the boundary. For these examples, we plot the equipo-
tential lines of the total field and present tables showing the convergence rate of the algorithm.

Remark 15. In the examples below, the problems to be solved via the procedure of the preceding section
have no simple analytical solution. Thus, we tested the accuracy of our procedure by evaluating our so-
lution via the formula (44) at a large number M of nodes on the boundary I' (in our experiments, we always
used M = 2000), and comparing it with the analytically evaluated right-hand side. We did not need to verify
the fact that our solutions satisfy the Laplace equation, since this follows directly from the representation

(44).

In each of those tables, the first column contains the total number N of nodes in the discretization of
each curve. The second column contains the condition number of the linear system. The third column
contains the relative L2 error of the numerical solution as compared with the analytically evaluated Di-
richlet data on the boundary. The fourth column contains the maximum absolute error on the boundary. In
the last two columns, we list the errors of the numerical solution as compared with the numerical solution
with twice the number of nodes, where the solution is evaluated at 1000 equispaced points on a circle of
radius 3.3 centered at the origin; the fifth column contains the relative L? error, and the sixth column
contains the maximum absolute error.

Example 1. In this example, the boundary is the line segment parametrized by the formula

{;82’_02 _1<e<l (62)

The Dirichlet data are generated by a unit charge at (0, 0). The numerical results are shown in Table 1. The

source, curve and equipotential lines are plotted in Fig. 1.

Example 2. In this example, the boundary is a sinusoidal arc parametrized by the formula

x()=05, 3 _ _3=n -
{y<z)=cos(z>, ; SIsT (63)

The Dirichlet data arc generated by one positive charge of unit strength at (0, 1.5) and another negative
charge of unit strength at (0, 0). The numerical results are shown in Table 2. The sources, curve and
equipotential lines are plotted in Fig. 2.

Table 1
Numerical results for Example 1
N K EX(I) E>(I) E%(u) E*(u)
8 0.200E + 01 0.703E-01 0.178E+ 00 0.296E — 02 0.528E - 02
16 0.222E+01 0.759E - 02 0.212E-01 0.641E - 04 0.114E-03
32 0.212E+01 0.165E-03 0.486E 03 0.556E - 07 0.991E-07
64 0.206E +01 0.147E - 06 0.446E - 06 0.835E~-13 0.150E - 12
128 0.203E +01 0.225E~12 0.690E-12 0.355E-15 0.222E~14

256 0.202E +01 0.935E-15 0.214E-13 0.343E-15 0.200E- 14




12 S. Jiang, V. Rokhlin | Journal of Computational Physics 195 (2004) 1-16

0.8 T T T

0.6

0.2+

eatl "\
TS )
i g
S

>
.
3\ N
Lo
-
e

0.2} e

-0.41

. e

-0'6-1 .5 -1 -0.5 0 0.5 1 1.5

Fig. 1. Source, curve, and equipotential lines for Example 1.

Table 2
Numerical results for Example 2
N K EXTI) E*(I") E*(u) E>(u)
32 0.195E +01 0.271E-01 0.864E - 01 0.658E-02 0.469E - 02
64 0.187E+01 0.240E- 02 0.847E-02 0.146E - 03 0.104E-03
128 0.182E +01 0.422E-04 0.157E-03 0.135E-06 0.955E - 07
256 0.179E + 01 0.307E-07 0.117E-06 0.245E-12 0.173E-12
512 0.178E+01 0.431E-13 0.160E - 12 0971E-15 0.133E-14
1024 0.177E+01 0.304E-14 0.450E-13 0.941E-15 0.122E-14

Example 3. In this example, the boundary is a spiral parametrized by the formula
x(t) = tcos(3.3nt) — 0.1,

{ (t) = tsin(3.3m1), 025532, (64)

The Dirichlet data are generated by a unit charge at (0, 0). The numerical results are shown in Table 3. The

source, curve and equipotential lines are plotted in Fig. 3.

Example 4. In this example, we consider the case of several open curves. The boundary consists of three
elliptic arcs parametrized by the formulae
(65)

x1(t) = —tcos(3.3nt) — 1.45,
{J’1 (£) = —tsin(3.3nr) + 0.55, 02<1<1.2,

(66)

x,(t) = tcos(3.3nf) - 0.1,
{yz(t) = tsin(3.3nt) — 1.2, 02<1<1.2,
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Fig. 2. Sources, curve, and equipotential lines for Example 2.

Table 3
Numerical results for Example 3
N K EXI) E>=(I) E*(u) E*(u)
32 0.704E + 03 0.594E - 01 0.125E+00 0.233E+00 0.685E - 01
64 0.657E +02 0.108E-02 0.665E— 02 0417E-02 0.201E-02
128 0.523E+02 0.904E - 04 0.653E-03 0.101E-03 0.575E-04
256 0.394E +02 0.213E-05 0.183E-04 0.179E - 06 0.125E-06
512 0.279E +02 0.313E-08 0.272E-07 0.156E-11 0.123E~11
1024 0.196E + 02 0.184E~13 0.147E~12 0.211E-13 0.933E-14

x3(¢) = tcos(3.3nt) + 1.25,
ys(f) = tsin(3.3nr) + 0.85,

The Dirichlet data are generated by four unit charges located at (0,0), (1.35,0.75), (—1.55,0.75), (0, —1.2).
The numerical results are shown in Table 4, where N is the number of nodes on each curve. The sources,
curves and equipotential lines are plotted in Fig. 4.

0.2<r< 1.2, (67)

Remark 16. The above examples illustrate the superalgebraic convergence of the scheme for smooth data
and curves (see Lemmas 5, 8). The number of nodes needed depends on the complexity of the underlying
geometry and the smoothness of the prescribed data. The condition number of the resulting linear system is
usually very low.

7. Conclusions and generalizations

We have presented a second kind integral equation formulation for the Dirichlet problem for the La-
place equation in two dimensions, with the boundary condition specified on a curve (consisting of one or
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Fig. 3. Source, curve, and equipotential lines for Example 3.

Table 4
Numerical results for Example 4
N K EXI) E>(I) E*(u) E*(u)
8 0.204E +02 0.825E~01 0.370E + 00 0.848E+01 0.451E~01
16 0.183E+02 0.180E - 01 0.121E+00 0.259E +00 0.121E-02
32 0.145E+02 0.183E-02 0.131E~01 0.665E - 03 0.355E~-05
64 0.116E +02 0.355E-04 0.455E - 03 0.738E 07 0.252E - 09
128 0.963E +01 0.314E-07 0.353E-06 0.302E-11 0.232E-13
256 0.851E+01 0.511E-~13 0.520E-12 0.269E-11 0.192E-13

more separate segments). The resulting numerical algorithm converges superalgebraically whenever both
the boundary data and the curves are smooth.

In order to concentrate on the derivation and analysis of the integral formulation, we have chosen to use
a very simple numerical scheme (see Section 5 above); the CPU time requirements of the procedure of
Section 5 scale as n*, with n the number of nodes in the discretization of the curve where the boundary
condition is specified. A straightforward combination of the Fast Multipole Method (FMM), Fast Fourier
Transform (FFT), and one of many standard iterative solvers yields an order n - log(n) algorithm; such a
scheme has been implemented, and will be reported at a later date. It is also possible to construct an order n
scheme via the use of the FMM alone; according to the authors’ estimates, for problems of practical size,
this would offer no advantages over an FFT-based procedure.

Remark 17. In the iterative scheme outlined above, each step requires order n - log(n) operations. Obvi-
ously, the complexity of the scheme also depends on the number of iterations needed to reach a required
tolerance, which is to a large extent (though not entirely) determined by the spectral behavior of the dis-
cretized system. As observed by one of referees to this paper, a critical question for large-scale problems is
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Fig. 4. Sources, curves, and equipotential lines for Example 4.

how the spectrum of the matrix 4 of the discretized system (or the spectrum of 4*4 depending on the al-
gorithm used) behaves as more and more reasonably separated curves of similar shapes are added to the
geometry. This is currently under investigation.

The scheme of this paper can be applied almost without modification to elliptic PDEs other than the
Laplace equation (such as Helmholtz equation, Yukawa equation, etc.). Indeed, the Green’s function for
any such equation has the form

G(x,y) = ¢(x,y) - log(|lx = ¥lI) + ¥ (x,), (68)

with @, ¥ a pair of smooth functions (see, for example, [2]). When the procedure of Section 4 of this paper is
applied to Green’s function of the form (68), the result is unchanged, except for the change in the compact
operator P, in (38). However, the convergence rate of the numerical scheme of Section 5 deteriorates
drastically, since in this case the kernel X of the operator P, in (38) is logarithmically singular (while for the
Laplace equation, it is smooth). High-order discretization schemes for such integral equations can be found
in the literature (see, for example, [1,8,13]).

Finally, most results of this paper admit generalizations to two-dimensional surfaces in R®; while the
necessary analytical apparatus is more involved, the results are very similar to those obtained here. Spe-
cifically, the product of a hypersingular integral operator on an open surface in R?® with the single layer
potential operators (either from the left or from the right) is an integral operator of the second kind, except
for simple corrections at the boundary of the surface. Such a scheme in three dimensions is being imple-
mented, and will be reported at a later date.
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